852 resultados para Ionic solutions.
Resumo:
N,N-dimethyl-pyrrolidinium iodide has been investigated using differential scanning calorimetry, nuclear magnetic resonance (NMR) spectroscopy, second moment calculations, and impedance spectroscopy. This pyrrolidinium salt exhibits two solid-solid phase transitions, one at 373 K having an entropy change, Delta S, of 38 J mol(-1) K-1 and one at 478 K having Delta S of 5.7 J mol(-1) K-1. The second moment calculations relate the lower temperature transition to a homogenization of the sample in terms of the mobility of the cations, while the high temperature phase transition is within the temperature region of isotropic tumbling of the cations. At higher temperatures a further decrease in the H-1 NMR linewidth is observed which is suggested to be due to diffusion of the cations. (C) 2005 American Institute of Physics.
Resumo:
Layered Double Hydroxides are a class of materials that can be described as positively charged planar layers consisting of divalent and trivalent cations in the center of edge-sharing octahedra. The positive charge in the LDH layers must be compensated by anion intercalation. These materials have applications that include adsorption and/or sorption of anionic species. Cholic acid is one of the main acids produced by the liver. It promotes transport of lipids through aqueous systems. This work reports on the adsorption of Cholic acid anions in MgAl-CO3-LDH taking ionic strength, pH, and temperature effects into account. The adsorbent was characterized by different techniques. Cholate anion adsorption was performed at two different temperatures (298 and 323 K), two different ionic strength conditions (0.0 and 0.1 M of NaCl), and two different pH values (7.0 and 10.0). The results show that the sorption of Cholate anions in calcined LDH can remove a considerable amount of these anions from the medium. Cholate anion adsorption in the LDH with no calcining also occurs, but at a lower amount.
Resumo:
In this work we report the adsorption of phenylalanine (Phe) on Magnesium Aluminum Layered Double Hydroxides (Mg-Al-CO(3)-LDH) at two different temperatures (298 and 310 K) and under two distinct ionic strength conditions (with and without the addition 0.1 M of NaCl). The adsorption isotherms exhibit the same profile in all conditions, and they only differ in the amount of removed Phe. At lower ionic strength, the isotherms are almost identical at both temperatures, except for the last points, where the increase in temperature causes a decrease in the amount of adsorbed Phe. An increase in ionic strength results in a decrease in Phe adsorption. The electrokinetic potential decreases as the amount of adsorbed Phe increases, and only positive values are observed. This indicates that the surface of the adsorbent is not totally neutralized and suggests that more Phe could be removed by adsorption. The presence of Phe on the solid is confirmed by FTIR spectra, which present the specific bands assigned to Phe. The hydrophobicity of the amino acid probably contributes to its extraction, thus enabling the removal of a great amount of Phe. In conclusion, LDH is potentially applicable in the removal of Phe from wastewater.
Resumo:
N,N-Dimethyl-pyrrolidinium iodide, and the effect of doping with LiI, has been investigated using DSC, NMR, and impedance spectroscopy. It was found that the addition of a small amount of LiI enhances the ionic conductivity by LIP to 3 orders of magnitude for this ionic solid. Furthermore, a slight decrease in phase transition onset temperatures, as well as the appearance of a superimposed narrow line in the H-1 NMR spectra with dopant, suggest that the LiI facilitates the mobility of the matrix material, possibly by the introduction of vacancies within the lattice. Li-7 NMR line width measurements reveal a narrow Li line width, decreasing in width and increasing in intensity with temperature, indicating mobile Li ions.
Resumo:
A prospective randomized trial was conducted to compare the efficacy of a rice-based oral rehydration solution (ORS) with glucose ORS in infants and children under 5 years of age with acute diarrhoea and mild to moderate dehydration (<10%). One hundred children presenting to a large metropolitan teaching hospital were eligible for entry to the study and were randomized to receive rice ORS or glucose ORS. Outcome measures were stool output (SO), duration of illness (DD) and recovery time to introduction of other fluids (RTF) and diet (RTD). Significant differences were found for all outcome measures in favour of the rice ORS group. Mean SO was lower (160 vs 213 mt; P<0.02), mean DD was reduced (17.3 vs 24.3 h; P = 0.03) and median RTF was decreased (12.7 vs 18.1 h; P< 0.001) in the rice ORS group compared with the glucose ORS group. The median rime to introduction of diet and mean length of hospital stay showed similar significant reductions. Our study has shown rice ORS to be an acceptable alternative to glucose ORS in young children and have shown that it is significantly more effective in reducing the course of diarrhoeal illness and the time taken to return to normal drinking and eating habits.
Resumo:
Introduction. The quality and effectiveness of myocardial protection are fundamental problems to expand the use of and consequently good outcomes of donated hearts for transplantation. Objective. The purpose of this investigation was to compare the cardioprotective effects of Krebs-Henseleit, Bretschneider-HTK, St Thomas, and Celsior solutions using a modified nonrecirculating Langendorff column model of isolated perfused rat heart during prolonged cold storage. Materials and Methods. After removal 36 rat hearts underwent isolated perfusion into a Langendorff apparatus using Krebs-Henseleit solution for a 15-minute period of recovery; we excluded organs that did not maintain an aortic pressure above 100 m Hg. Subsequently, we equally distributed the hearts into four groups according to the cardioprotection solution; group 1, Krebs-Henseleit (control); group II, Bretschneider-HTK; group III, St Thomas; and group IV, Celsior. Each heart received the specific cardioplegic solution at 10 C for 2-hour storage at 20 C, before a 15 minutes perfusion with Krebs-Henseleit solution for recovery and stabilization. After 60 additional minutes of perfusion, every 5 minutes we determined heart rate (HR), coronary flow (CF), left ventricular systolic pressure (LVSP), and positive and negative peak of the first derivative of left ventricular pressure (+dP/dt and dP/dt, respectively). Results. Comparative analysis by Turkey`s test showed the following performances among the groups at 60 minutes of reperfusion: HR: II = IV > III > I; CF: II = IV > I = III; LVSP: IV > I = II = III; +dP/dt: IV > I = II = III; and dP/dt: IV = II > I = II. Conclusion. Cardioprotective solutions generally used in clinical practice are not able to avoid hemodynamic alterations in hearts exposed to prolonged ischemia. Celsior solution showed better performance than Bretschneider-HTK, St Thomas, and Krebs-Henseleit.
Resumo:
The flux of a compound across a membrane from any formulation, whether it contains penetration enhancers or not, is limited by its saturated solubility in the vehicle. Under such conditions the concentration of the permeant in the outer layers of the stratum corneum is also saturated. Consequently, when the permeation of a drug from a supersaturated solution leads to enhanced penetration, the concentration of the drug in the outer layers of the membrane is also supersaturated. Therefore, the stratum corneum may possess antinucleant properties which inhibit or retard the crystallisation process. In this study, the enhanced in vitro permeation of supersaturated solutions of piroxicam across human skin in diffusion cells was demonstrated. The amount of permeant in the stratum corneum was determined using a tape stripping technique. Supersaturated solutions up to four degrees of saturation were investigated which produced a linear relationship between the degree of saturation and the amount of piroxicam in the stratum corneum (R-2 = 0.970). Furthermore, the amount of piroxicam in the viable layers of the skin also increased with increasing degree of saturation. An analysis of the results suggested that enhanced penetration across human skin from supersaturated solutions of piroxicam may occur as a result of the antinucleating ability of the intercellular lipids of the stratum corneum. (C) 1997 Elsevier Science B.V.
Resumo:
Absorption kinetics of solutes given with the subcutaneous administration of fluids is ill-defined. The gamma emitter, technitium pertechnetate, enabled estimates of absorption rate to be estimated independently using two approaches. In the first approach, the counts remaining at the site were estimated by imaging above the subcutaneous administration site, whereas in the second approach, the plasma technetium concentration-time profiles were monitored up to 8 hr after technetium administration. Boluses of technetium pertechnetate were given both intravenously and subcutaneously on separate occasions with a multiple dosing regimen using three doses on each occasion. The disposition of technetium after iv administration was best described by biexponential kinetics with a V-ss of 0.30 +/- 0.11 L/kg and a clearance of 30.0 +/- 13.1 ml/min. The subcutaneous absorption kinetics was best described as a single exponential process with a half-life of 18.16 +/- 3.97 min by image analysis and a half-life of 11.58 +/- 2.48 min using plasma technetium time data. The bioavailability of technetium by the subcutaneous route was estimated to be 0.96 +/- 0.12. The absorption half-life showed no consistent change with the duration of the subcutaneous infusion. The amount remaining at the absorption site with time was similar when analyzed using image analysis, and plasma concentrations assuming multiexponential disposition kinetics and a first-order absorption process. Profiles of fraction remaining at the absorption sire generated by deconvolution analysis, image analysis, and assumption of a constant first-order absorption process were similar. Slowing of absorption from the subcutaneous administration site is apparent after the last bolus dose in three of the subjects and can De associated with the stopping of the infusion. In a fourth subject, the retention of technetium at the subcutaneous site is more consistent with accumulation of technetium near the absorption site as a result of systemic recirculation.
Resumo:
The photodegradation of irinotecan (CPT-11), the semisynthetic derivative of the antitumor alkaloid 20(S)-camptothecin, has been investigated. The drug was exposed to laboratory light for up to 5 days in 0.9% saline solution (pH 8.5). Five significant photodegradation products were observed and a high-performance liquid chromatography (HPLC) assay was employed to isolate them from CPT-11 using gradient conditions. The structures were elucidated by nuclear magnetic resonance spectroscopy and tandem mass spectrometry and shown to be the result of extensive modifications of the lactone ring of CPT-11. Three of the compounds were found to belong to the mappicine group of alkaloids. In addition, the effect of light on the stability of CPT-11 in aqueous solutions and biological fluids was also assessed, Potassium phosphate buffers (0.05 M, pH 5.0-8.2) and saline, plasma, urine, and bile solutions containing 20 mu M CPT-11 were equilibrated in the dark for 24 h before being exposed to laboratory light for up to 171 h at ambient temperature. Four of the five identified photodegradation products were observed and quantitated by isocratic HPLC, using a different detection mode (fluorescence) than the one used for gradient elution, In general, CPT-11 was found to be unstable under neutral and alkaline conditions for all solutions investigated, with the exception of bile. We conclude that CPT-11 is photolabile and that care should be taken to protect samples, particularly those intended for the isolation and identification of novel metabolites of CPT-11.
Resumo:
Background: Splanchnic perfusion is prone to early injury and persists despite normalization of global hemodynamic variables in sepsis. Volume replacement guided by oxygen derived variables has been recommended in the management of septic patients. Our hypothesis was that a hypertonic isoneotic solution Would improve the benefits of crystalloids replacement guided by mixed venous oxygen saturation. Methods: Seventeen anesthetized and mechanically ventilated mongrel dogs received an intravenous infusion of live E. coli in 30 minutes. They were then randomized into three groups: control group (n = 3) bacterial infusion without treatment; normal saline (n = 7), initial fluid replacement with 32 mL/kg of normal saline during 20 minutes; hypertonic solution (n = 7), initial fluid replacement with 4 mL/kg of hypertonic solution during 5 minutes. After 30 and 60 Minutes, additional boluses of normal saline were administered when mixed venous oxygen saturation remained below 70%. Mean arterial pressure, cardiac output; regional blood flows, systemic and regional oxygen-derived variables, and lactate levels were assessed. Animals were observed for 90 minutes and then killed. Hystopathological analysis including apoptosis detection using terminal deoxynucleotidil transferase mediated dUTP-biotin nick end labeling was performed. Results: A hypodynamic septic shock was observed after bacterial infusion. Both the fluid-treated groups presented similar transient benefits in systemic and regional variables. A greater degree of gut epithelial cells apoptosis was observed in normal saline-treated animals. Conclusions: Although normalization of mixed venous oxygen saturation was not associated with restoration of markers of splanchnic or other systemic perfusion variables, the initial fluid savings with hypertonic saline and its latter effect on gut apoptosis may be of interest in sepsis management.
Resumo:
The aims of this study were: (1) to correlate surface (SH) and cross-sectional hardness (CSH) with microradiographic parameters of artificial enamel lesions; (2) to compare lesions prepared by different protocols. Fifty bovine enamel specimens were allocated by stratified randomisation according to their initial SH values to five groups and lesions produced by different methods: MC gel (methylcellulose gel/lactic acid, pH 4.6, 14 days); PA gel (polyacrylic acid/lactic acid/hydroxyapatite, pH 4.8, 16 h); MHDP (undersaturated lactate buffer/methyl diphosphonate, pH 5.0, 6 days); buffer (undersaturated acetate buffer/fluoride, pH 5.0, 16 h), and pH cycling (7 days). SH of the lesions (SH(1)) was measured. The specimens were longitudinally sectioned and transverse microradiography (TMR) and CSH measured at 10- to 220-mu m depth from the surface. Overall, there was a medium correlation but non-linear and variable relationship between mineral content and root CSH. root SH(1) was weakly to moderately correlated with surface layer properties, weakly correlated with lesion depth but uncorrelated with integrated mineral loss. MHDP lesions showed the highest subsurface mineral loss, followed by pH cycling, buffer, PA gel and MC gel lesions. The conclusions were: (1) CSH, as an alternative to TMR, does not estimate mineral content very accurately, but gives information about mechanical properties of lesions; (2) SH should not be used to analyse lesions; (3) artificial caries lesions produced by the protocols differ, especially considering the method of analysis. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Objective. The objective of this study was to evaluate the antibacterial efficacy of irrigating solutions and their combinations against Enterococcus faecalis. Study design. One hundred ten single-rooted human teeth were inoculated with E. faecalis and incubated for 21 days. Teeth were divided according to the irrigant: Group I (GI), 2.5% sodium hypochlorite solution (NaOCl); GII, 2.5% NaOCl + 10% citric acid; GIII, 2.5% NaOCl + apple cider vinegar; GIV, apple cider vinegar; GV, 2% chlorhexidine solution; GVI, 1% peracetic acid; GVII, saline solution. Microbiological samples were taken after root canal preparation and 7 days later. Data were submitted to ANOVA (5%). Results. All solutions promoted reduction of E. faecalis after instrumentation, but bacterial counts were higher in the final sample. GI, GV, and GVI had lower bacterial counts than the other groups. Conclusions. The irrigating solutions may present activity but do not eradicate E. faecalis in the root canal system. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 112:396-400)
Resumo:
Introduction: The aim of this study was to evaluate the biofilm dissolution and cleaning ability of different irrigant solutions on intraorally infected dentin. Methods: One hundred twenty bovine dentin specimens were infected intraorally by using a removable orthodontic device. Thirty samples were used for each irrigant solution: 2% chlorhexidine and 1%, 2.5%, and 5.25% sodium hypochlorite (NaOCl). The solutions were used for 5, 15, and 30 minutes and at 2 experimental volumes, 500 mu L and 1 mL. The samples were stained by using acridine orange dye before and after the experiments and evaluated by using a confocal microscope. The percentage of biofilm, isolated cells, and noncolonized dentin was measured by using a grid system. Differences in the reduction or increase of the studied parameters were assessed by using nonparametric methods (P < .05). Results: The higher values of biofilm dissolution and noncolonized dentin were found in the 30-minute NaOCl group and in the 5-minute and 15-minute groups of 5.25% NaOCL. The use of 2% chlorhexidine solution did not improve the biofilm dissolution or increase the cleaning of the dentin in comparison with the NaOCl solutions (P < .05). Conclusions: Two percent chlorhexidine does not dissolve the biofilms. Thirty minutes of NaOCl are necessary to have higher values of biofilm dissolution and to increase the cleaning of the dentin independently of the concentration in comparison with the 5-minute and 15-minute contact times. (J Endod 2011;37:1134-1138)