941 resultados para Invasive Species


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Enemy release is frequently posed as a main driver of invasiveness of alien species. However, an experimental multi-species test examining performance and herbivory of invasive alien, non-invasive alien and native plant species in the presence and absence of natural enemies is lacking. In a common garden experiment in Switzerland, we manipulated exposure of seven alien invasive, eight alien non-invasive and fourteen native species from six taxonomic groups to natural enemies (invertebrate herbivores), by applying a pesticide treatment under two different nutrient levels. We assessed biomass production, herbivore damage and the major herbivore taxa on plants. Across all species, plants gained significantly greater biomass under pesticide treatment. However, invasive, non-invasive and native species did not differ in their biomass response to pesticide treatment at either nutrient level. The proportion of leaves damaged on invasive species was significantly lower compared to native species, but not when compared to non-invasive species. However, the difference was lost when plant size was accounted for. There were no differences between invasive, non-invasive and native species in herbivore abundance. Our study offers little support for invertebrate herbivore release as a driver of plant invasiveness, but suggests that future enemy release studies should account for differences in plant size among species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although plastic root-foraging responses are thought to be adaptive, as they may optimize nutrient capture of plants, this has rarely been tested. We investigated whether nutrient-foraging responses are adaptive, and whether they pre-adapt alien species to become natural-area invaders. We grew 12 pairs of congeneric species (i.e., 24 species) native to Europe in heterogeneous and homogeneous nutrient environments, and compared their foraging responses and performance. One species in each pair is a USA natural-area invader, and the other one is not. Within species, individuals with strong foraging responses, measured as plasticity in root diameter and specific root length, had a higher biomass. Among species, the ones with strong foraging responses, measured as plasticity in root length and root biomass, had a higher biomass. Our results therefore suggest that root foraging is an adaptive trait. Invasive species showed significantly stronger root-foraging responses than non-invasive species when measured as root diameter. Biomass accumulation was decreased in the heterogeneous vs. the homogeneous environment. In aboveground, but not belowground and total biomass, this decrease was smaller in invasive than in non-invasive species. Our results show that strong plastic root-foraging responses are adaptive, and suggest that it might aid in pre-adapting species to becoming natural-area invaders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The suite of environments and anthropogenic modifications of sub-Antarctic islands provide key opportunities to improve our understanding of the potential consequences of climate change and biological species invasions on terrestrial ecosystems. The profound impact of human introduced invasive species on indigenous biota, and the facilitation of establishment as a result of changing thermal conditions, has been well documented on the French sub-Antarctic Kerguelen Islands (South Indian Ocean). The present study provides an overview of the vulnerability of sub-Antarctic terrestrial communities with respect to two interacting factors, namely climate change and alien insects. We present datasets assimilated by our teams on the Kerguelen Islands since 1974, coupled with a review of the literature, to evaluate the mechanism and impact of biological invasions in this region. First, we consider recent climatic trends of the Antarctic region, and its potential influence on the establishment, distribution and abundance of alien insects, using as examples one fly and one beetle species. Second, we consider to what extent limited gene pools may restrict alien species' colonisations. Finally, we consider the vulnerability of native communities to aliens using the examples of one beetle, one fly, and five aphid species taking into consideration their additional impact as plant virus vectors. We conclude that the evidence assimilated from the sub-Antarctic islands can be applied to more complex temperate continental systems as well as further developing international guidelines to minimise the impact of alien species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One hypothesis for the success of invasive species is reduced pathogen burden, resulting from a release from infections or high immunological fitness (low immunopathology) of invaders. Despite of strong selection exerted on the host, the evolutionary response of invaders to newly acquired pathogens has rarely been considered. The two independent and genetically distinct invasions of the Pacific oyster Crassostrea gigas into the North Sea represent an ideal model system to study fast evolutionary responses of invasive populations. By exposing both invasion sources to ubiquitous and phylogenetically diverse pathogens (Vibrio spp.) we demonstrate that within a few generations hosts adapted to sympatric pathogen communities. However, this local adaptation only became apparent in selective environments, i.e. at elevated temperatures reflecting patterns of disease outbreaks in natural populations. Resistance against sympatric and allopatric Vibrio spp. strains was dominantly inherited in crosses between both invasion sources, resulting in an overall higher resistance of admixed individuals than pure lines. Therefore we suggest that a simple genetic resistance mechanism of the host is matched to a common virulence mechanism shared by local Vibrio strains. This combination might have facilitated a fast evolutionary response that can explain another dimension of why invasive species can be so successful in newly invaded ranges.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nonnative aquatic species are invasive worldwide. These species adversely affect natural aquatic ecosystems in a variety of ways and can negatively affect agriculture, recreation and industry. This study addresses identification and control of aquatic plant species of concern in Colorado State Parks. Seventeen species identified as potential threats to the parks and safe, effective chemical control methodologies were determined for each species. A matrix was developed to include the plants, appropriate chemical controls and the type of aquatic habitat where chemical use would be safe and effective. The matrix and recommendations for its use will be provided to the Colorado Division of Parks and Outdoor Recreation to develop a management plan under Section 1204 of the National Invasive Species Act.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The notion of being sure that you have completely eradicated an invasive species is fanciful because of imperfect detection and persistent seed banks. Eradication is commonly declared either on an ad hoc basis, on notions of seed bank longevity, or on setting arbitrary thresholds of 1% or 5% confidence that the species is not present. Rather than declaring eradication at some arbitrary level of confidence, we take an economic approach in which we stop looking when the expected costs outweigh the expected benefits. We develop theory that determines the number of years of absent surveys required to minimize the net expected cost. Given detection of a species is imperfect, the optimal stopping time is a trade-off between the cost of continued surveying and the cost of escape and damage if eradication is declared too soon. A simple rule of thumb compares well to the exact optimal solution using stochastic dynamic programming. Application of the approach to the eradication programme of Helenium amarum reveals that the actual stopping time was a precautionary one given the ranges for each parameter.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have developed a comprehensive ecological indicator for invasive exotic plants, a human-influenced component of the Everglades that could threaten the success of the restoration initiative. Following development of a conceptual ecological model for invasive exotic species, presented as a companion paper in this special issue, we developed criteria to evaluate existing invasive exotic monitoring programs for use in developing invasive exotic performance measures. We then used data from the selected monitoring programs to define specific performance measures, using species presence and abundance as the basis of the indicator for invasive exotic plants. We then developed a series of questions used to evaluate region and/or individual species status with respect to invasion. Finally, we used an expert panel who had answered the questions for invasive exotic plants in the Everglades Lake Okeechobee model to develop a stoplight restoration report card to communicate invasive exotic plant status. The report card system provides a way to effectively evaluate and present indicator data to managers, policy makers, and the public using a uniform format among indicators. Collectively, the model, monitoring assessment, performance measures, and report card enable us to evaluate how invasive plants are impacting the restoration program and how effectively that impact is being managed. Applied through time, our approach also allows us to follow the progress of management actions to control the spread and reduce the impacts of invasive species and can be easily applied and adapted to other large-scale ecosystem projects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Invasive species allow an investigation of trait retention and adaptations after exposure to new habitats. Recent work on corals from the Gulf of Aqaba (GoA) shows that tolerance to high temperature persists thousands of years after invasion, without any apparent adaptive advantage. Here we test whether thermal tolerance retention also occurs in another symbiont-bearing calcifying organism. To this end, we investigate the thermal tolerance of the benthic foraminifera Amphistegina lobifera from the GoA (29° 30.14167 N 34° 55.085 E) and compare it to a recent "Lessepsian invader population" from the Eastern Mediterranean (EaM) (32° 37.386 N, 34°55.169 E). We first established that the studied populations are genetically homogenous but distinct from a population in Australia, and that they contain a similar consortium of diatom symbionts, confirming their recent common descent. Thereafter, we exposed specimens from GoA and EaM to elevated temperatures for three weeks and monitored survivorship, growth rates and photophysiology. Both populations exhibited a similar pattern of temperature tolerance. A consistent reduction of photosynthetic dark yields was observed at 34°C and reduced growth was observed at 32°C. The apparent tolerance to sustained exposure to high temperature cannot have a direct adaptive importance, as peak summer temperatures in both locations remain <32°C. Instead, it seems that in the studied foraminifera tolerance to high temperature is a conservative trait and the EaM population retained this trait since its recent invasion. Such pre-adaptation to higher temperatures confers A. lobifera a clear adaptive advantage in shallow and episodically high temperature environments in the Mediterranean under further warming.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The spread of invasive organisms is one of the greatest threats to ecosystems and biodiversity worldwide. Understanding the evolutionary and ecological factors responsible for the transport, introduction, establishment and spread of invasive species will assist the development of control strategies. The New Zealand mudsnail, Potamopyrgus antipodarum (Gray 1843) (Gastropoda: Hydrobiidae), is a global freshwater invader, with populations established in Europe, Asia, the Americas and Australia. While sexual and asexual P. antipodarum coexist in the native range, invasive populations reproduce by parthenogenesis, producing dense populations that compete for resources with native species. Potamopyrgus antipodarum is a natural model system for the study of evolutionary and ecological processes underlying invasion. This thesis assesses the invasion history, genetic diversity and ecology of P. antipodarum in Australia, with particular focus on: a) potential source populations, b) distribution and structure of populations, and c) species traits related to the establishment, persistence and spread of invasive P. antipodarum. Genetic analyses were carried out on specimens collected for this study from New Zealand and Australia, along with existing museum samples. In combination with published data, the analyses revealed low genetic diversity among and within invasive populations in south-eastern Australia, relative to New Zealand populations. Phylogenetic relationships inferred from mitochondrial sequences indicated that the Australian populations belong to clades dominated by parthenogenetic haplotypes that are known to be present in Europe and the US. These ‘invasive clades’ are likely to originate from the North Island of New Zealand, and suggest a role for selection in determining genetic composition of invasive populations. The genotypic diversity of Australian P. antipodarum was low, with few, closely related clones distributed across south-eastern Australia. The pattern of clone distribution was not consistent with any assessed geographical or abiotic factors; instead a few, widely-distributed clones were present in high frequencies at most sites. Differences in clone frequencies were found, which may indicate differential success of clonal lineages. A range of traits have been proposed as facilitators of invasion success, and within-species variation in these traits can promote differential success of genotypes. Using laboratory-based experiments, the performance of the three most common Australian clones was tested across a suite of invasion-relevant traits. Ecologically-relevant variation in traits was found among the clones. These differences may have determined the spatial distribution of clones, and may continue to do so into the future. This thesis found that the P. antipodarum invasion of Australia is the result of few introductions of a small number of globally-invasive genotypes that vary in ecologically-relevant traits. From a source of considerable genetic diversity in the native range, very few genotypes have become invasive. Those that are invasive appear to be very successful at continental scales. These findings highlight a capacity in asexual invaders to successfully invade, and potentially adapt to, a broad range of ecosystems. The P. antipodarum invasion system is amenable to research using combinations of field-based studies, molecular and laboratory approaches, and is likely to yield significant, broadly-applicable insights into invasion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Invasive species pose a major threat to aquatic ecosystems. Their impact can be particularly severe in tropical regions, like those in northern Australia, where >20 invasive fish species are recorded. In temperate regions, environmental DNA (eDNA) technology is gaining momentum as a tool to detect aquatic pests, but the technology's effectiveness has not been fully explored in tropical systems with their unique climatic challenges (i.e. high turbidity, temperatures and ultraviolet light). In this study, we modified conventional eDNA protocols for use in tropical environments using the invasive fish, Mozambique tilapia (Oreochromis mossambicus) as a detection model. We evaluated the effects of high water temperatures and fish density on the detection of tilapia eDNA, using filters with larger pores to facilitate filtration. Large-pore filters (20 μm) were effective in filtering turbid waters and retaining sufficient eDNA, whilst achieving filtration times of 2-3 min per 2-L sample. High water temperatures, often experienced in the tropics (23, 29, 35 °C), did not affect eDNA degradation rates, although high temperatures (35 °C) did significantly increase fish eDNA shedding rates. We established a minimum detection limit for tilapia (1 fish/0.4 megalitres/after 4 days) and found that low water flow (3.17 L/s) into ponds with high fish density (>16 fish/0.4 megalitres) did not affect eDNA detection. These results demonstrate that eDNA technology can be effectively used in tropical ecosystems to detect invasive fish species. © 2016 John Wiley & Sons Ltd.