971 resultados para Invariant tori
Resumo:
Object recognition requires that templates with canonical views are stored in memory. Such templates must somehow be normalised. In this paper we present a novel method for obtaining 2D translation, rotation and size invariance. Cortical simple, complex and end-stopped cells provide multi-scale maps of lines, edges and keypoints. These maps are combined such that objects are characterised. Dynamic routing in neighbouring neural layers allows feature maps of input objects and stored templates to converge. We illustrate the construction of group templates and the invariance method for object categorisation and recognition in the context of a cortical architecture, which can be applied in computer vision.
Resumo:
The Proportional, Integral and Derivative (PID) controllers are widely used in induxtrial applications. Their popularity comes from their robust performance and also from their functional simplicity.
Resumo:
Symmetry group methods are applied to obtain all explicit group-invariant radial solutions to a class of semilinear Schr¨odinger equations in dimensions n = 1. Both focusing and defocusing cases of a power nonlinearity are considered, including the special case of the pseudo-conformal power p = 4/n relevant for critical dynamics. The methods involve, first, reduction of the Schr¨odinger equations to group-invariant semilinear complex 2nd order ordinary differential equations (ODEs) with respect to an optimal set of one-dimensional point symmetry groups, and second, use of inherited symmetries, hidden symmetries, and conditional symmetries to solve each ODE by quadratures. Through Noether’s theorem, all conservation laws arising from these point symmetry groups are listed. Some group-invariant solutions are found to exist for values of n other than just positive integers, and in such cases an alternative two-dimensional form of the Schr¨odinger equations involving an extra modulation term with a parameter m = 2−n = 0 is discussed.
Resumo:
La thèse présente une description géométrique d’un germe de famille générique déployant un champ de vecteurs réel analytique avec un foyer faible à l’origine et son complexifié : le feuilletage holomorphe singulier associé. On montre que deux germes de telles familles sont orbitalement analytiquement équivalents si et seulement si les germes de familles de difféomorphismes déployant la complexification de leurs fonctions de retour de Poincaré sont conjuguées par une conjugaison analytique réelle. Le “caractère réel” de la famille correspond à sa Z2-équivariance dans R^4, et cela s’exprime comme l’invariance du plan réel sous le flot du système laquelle, à son tour, entraîne que l’expansion asymptotique de la fonction de Poincaré est réelle quand le paramètre est réel. Le pullback du plan réel après éclatement par la projection monoidal standard intersecte le feuilletage en une bande de Möbius réelle. La technique d’éclatement des singularités permet aussi de donner une réponse à la question de la “réalisation” d’un germe de famille déployant un germe de difféomorphisme avec un point fixe de multiplicateur égal à −1 et de codimension un comme application de semi-monodromie d’une famille générique déployant un foyer faible d’ordre un. Afin d’étudier l’espace des orbites de l’application de Poincaré, nous utilisons le point de vue de Glutsyuk, puisque la dynamique est linéarisable auprès des points singuliers : pour les valeurs réels du paramètre, notre démarche, classique, utilise une méthode géométrique, soit un changement de coordonée (coordonée “déroulante”) dans lequel la dynamique devient beaucoup plus simple. Mais le prix à payer est que la géométrie locale du plan complexe ambiante devient une surface de Riemann, sur laquelle deux notions de translation sont définies. Après avoir pris le quotient par le relèvement de la dynamique nous obtenons l’espace des orbites, ce qui s’avère être l’union de trois tores complexes plus les points singuliers (l’espace résultant est non-Hausdorff). Les translations, le caractère réel de l’application de Poincaré et le fait que cette application est un carré relient les différentes composantes du “module de Glutsyuk”. Cette propriété implique donc le fait qu’une seule composante de l’invariant Glutsyuk est indépendante.
Resumo:
A measure of association is row-size invariant if it is unaffected by the multiplication of all entries in a row of a cross-classification table by a same positive number. It is class-size invariant if it is unaffected by the multiplication of all entries in a class (i.e., a row or a column). We prove that every class-size invariant measure of association as-signs to each m x n cross-classification table a number which depends only on the cross-product ratios of its 2 x 2 subtables. We propose a monotonicity axiom requiring that the degree of association should increase after shifting mass from cells of a table where this mass is below its expected value to cells where it is above .provided that total mass in each class remains constant. We prove that no continuous row-size invariant measure of association is monotonic if m ≥ 4. Keywords: association, contingency tables, margin-free measures, size invariance, monotonicity, transfer principle.
Resumo:
Un algorithme permettant de discrétiser les équations aux dérivées partielles (EDP) tout en préservant leurs symétries de Lie est élaboré. Ceci est rendu possible grâce à l'utilisation de dérivées partielles discrètes se transformant comme les dérivées partielles continues sous l'action de groupes de Lie locaux. Dans les applications, beaucoup d'EDP sont invariantes sous l'action de transformations ponctuelles de Lie de dimension infinie qui font partie de ce que l'on désigne comme des pseudo-groupes de Lie. Afin d'étendre la méthode de discrétisation préservant les symétries à ces équations, une discrétisation des pseudo-groupes est proposée. Cette discrétisation a pour effet de transformer les symétries ponctuelles en symétries généralisées dans l'espace discret. Des schémas invariants sont ensuite créés pour un certain nombre d'EDP. Dans tous les cas, des tests numériques montrent que les schémas invariants approximent mieux leur équivalent continu que les différences finies standard.
Resumo:
For the discrete-time quadratic map xt+1=4xt(1-xt) the evolution equation for a class of non-uniform initial densities is obtained. It is shown that in the t to infinity limit all of them approach the invariant density for the map.
Resumo:
It is shown that the invariant integral, viz., the Kolmogorov second entropy, is eminently suited to characterize EEG quantitatively. The estimation obtained for a "clinically normal" brain is compared with a previous result obtained from the EEG of a person under epileptic seizure.
Resumo:
In this paper the class of continuous bivariate distributions that has form-invariant weighted distribution with weight function w(x1, x2) ¼ xa1 1 xa2 2 is identified. It is shown that the class includes some well known bivariate models. Bayesian inference on the parameters of the class is considered and it is shown that there exist natural conjugate priors for the parameters
Resumo:
As the popularity of digital videos increases, a large number illegal videos are being generated and getting published. Video copies are generated by performing various sorts of transformations on the original video data. For effectively identifying such illegal videos, the image features that are invariant to various transformations must be extracted for performing similarity matching. An image feature can be its local feature or global feature. Among them, local features are powerful and have been applied in a wide variety of computer vision aplications .This paper focuses on various recently proposed local detectors and descriptors that are invariant to a number of image transformations.
Resumo:
In this report, a face recognition system that is capable of detecting and recognizing frontal and rotated faces was developed. Two face recognition methods focusing on the aspect of pose invariance are presented and evaluated - the whole face approach and the component-based approach. The main challenge of this project is to develop a system that is able to identify faces under different viewing angles in realtime. The development of such a system will enhance the capability and robustness of current face recognition technology. The whole-face approach recognizes faces by classifying a single feature vector consisting of the gray values of the whole face image. The component-based approach first locates the facial components and extracts them. These components are normalized and combined into a single feature vector for classification. The Support Vector Machine (SVM) is used as the classifier for both approaches. Extensive tests with respect to the robustness against pose changes are performed on a database that includes faces rotated up to about 40 degrees in depth. The component-based approach clearly outperforms the whole-face approach on all tests. Although this approach isproven to be more reliable, it is still too slow for real-time applications. That is the reason why a real-time face recognition system using the whole-face approach is implemented to recognize people in color video sequences.
Resumo:
Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. Such a descriptor--based on a set of oriented Gaussian derivative filters-- is used in our recognition system. We report here an evaluation of several techniques for orientation estimation to achieve rotation invariance of the descriptor. We also describe feature selection based on a single training image. Virtual images are generated by rotating and rescaling the image and robust features are selected. The results confirm robust performance in cluttered scenes, in the presence of partial occlusions, and when the object is embedded in different backgrounds.
Resumo:
We present a new method to perform reliable matching between different images. This method exploits a projective invariant property between concentric circles and the corresponding projected ellipses to find complete region correspondences centered on interest points. The method matches interest points allowing for a full perspective transformation and exploiting all the available luminance information in the regions. Experiments have been conducted on many different data sets to compare our approach to SIFT local descriptors. The results show the new method offers increased robustness to partial visibility, object rotation in depth, and viewpoint angle change.
Resumo:
A scale-invariant moving finite element method is proposed for the adaptive solution of nonlinear partial differential equations. The mesh movement is based on a finite element discretisation of a scale-invariant conservation principle incorporating a monitor function, while the time discretisation of the resulting system of ordinary differential equations is carried out using a scale-invariant time-stepping which yields uniform local accuracy in time. The accuracy and reliability of the algorithm are successfully tested against exact self-similar solutions where available, and otherwise against a state-of-the-art h-refinement scheme for solutions of a two-dimensional porous medium equation problem with a moving boundary. The monitor functions used are the dependent variable and a monitor related to the surface area of the solution manifold. (c) 2005 IMACS. Published by Elsevier B.V. All rights reserved.