775 resultados para Internet-of-Things, Wireless Sensor Network, CoAP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the embedded capacitance material (ECM) is fabricated between the power and ground layers of the wireless sensor nodes, forming an integrated capacitance to replace the large amount of decoupling capacitors on the board. The ECM material, whose dielectric constant is 16, has the same size of the wireless sensor nodes of 3cm*3cm, with a thickness of only 14μm. Though the capacitance of a single ECM layer being only around 8nF, there are two reasons the ECM layers can still replace the high frequency decoupling capacitors (100nF in our case) on the board. The first reason is: the parasitic inductance of the ECM layer is much lower than the surface mount capacitors'. A smaller capacitance value of the ECM layer could achieve the same resonant frequency of the surface mount decoupling capacitors. Simulation and measurement fit this assumption well. The second reason is: more than one layer of ECM material are utilized during the design step to get a parallel connection of the several ECM capacitance layers, finally leading to a larger value of the capacitance and smaller value of parasitic. Characterization of the ECM is carried out by the LCR meter. To evaluate the behaviors of the ECM layer, time and frequency domain measurements are performed on the power-bus decoupling of the wireless sensor nodes. Comparison with the measurements of bare PCB board and decoupling capacitors solution are provided to show the improvement of the ECM layer. Measurements show that the implementation of the ECM layer can not only save the space of the surface mount decoupling capacitors, but also provide better power-bus decoupling to the nodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSN) are being used for a number of applications involving infrastructure monitoring, building energy monitoring and industrial sensing. The difficulty of programming individual sensor nodes and the associated overhead have encouraged researchers to design macro-programming systems which can help program the network as a whole or as a combination of subnets. Most of the current macro-programming schemes do not support multiple users seamlessly deploying diverse applications on the same shared sensor network. As WSNs are becoming more common, it is important to provide such support, since it enables higher-level optimizations such as code reuse, energy savings, and traffic reduction. In this paper, we propose a macro-programming framework called Nano-CF, which, in addition to supporting in-network programming, allows multiple applications written by different programmers to be executed simultaneously on a sensor networking infrastructure. This framework enables the use of a common sensing infrastructure for a number of applications without the users having to worrying about the applications already deployed on the network. The framework also supports timing constraints and resource reservations using the Nano-RK operating system. Nano- CF is efficient at improving WSN performance by (a) combining multiple user programs, (b) aggregating packets for data delivery, and (c) satisfying timing and energy specifications using Rate- Harmonized Scheduling. Using representative applications, we demonstrate that Nano-CF achieves 90% reduction in Source Lines-of-Code (SLoC) and 50% energy savings from aggregated data delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hexagonal wireless sensor network refers to a network topology where a subset of nodes have six peer neighbors. These nodes form a backbone for multi-hop communications. In a previous work, we proposed the use of hexagonal topology in wireless sensor networks and discussed its properties in relation to real-time (bounded latency) multi-hop communications in large-scale deployments. In that work, we did not consider the problem of hexagonal topology formation in practice - which is the subject of this research. In this paper, we present a decentralized algorithm that forms the hexagonal topology backbone in an arbitrary but sufficiently dense network deployment. We implemented a prototype of our algorithm in NesC for TinyOS based platforms. We present data from field tests of our implementation, collected using a deployment of fifty wireless sensor nodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) have been attracting increasing interests for developing a new generation of embedded systems with great potential for many applications such as surveillance, environment monitoring, emergency medical response and home automation. However, the communication paradigms in WSNs differ from the ones attributed to traditional wireless networks, triggering the need for new communication protocols. In this context, the recently standardised IEEE 802.15.4 protocol presents some potentially interesting features for deployment in wireless sensor network applications, such as power-efficiency, timeliness guarantees and scalability. Nevertheless, when addressing WSN applications with (soft/hard) timing requirements some inherent paradoxes emerge, such as power-efficiency versus timeliness, triggering the need of engineering solutions for an efficient deployment of IEEE 802.15.4 in WSNs. In this technical report, we will explore the most relevant characteristics of the IEEE 802.15.4 protocol for wireless sensor networks and present the most important challenges regarding time-sensitive WSN applications. We also provide some timing performance and analysis of the IEEE 802.15.4 that unveil some directions for resolving the previously mentioned paradoxes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proliferation of wireless sensor networks in a large spectrum of applications had been spurered by the rapid advances in MEMS(micro-electro mechanical systems )based sensor technology coupled with low power,Low cost digital signal processors and radio frequency circuits.A sensor network is composed of thousands of low cost and portable devices bearing large sensing computing and wireless communication capabilities. This large collection of tiny sensors can form a robust data computing and communication distributed system for automated information gathering and distributed sensing.The main attractive feature is that such a sensor network can be deployed in remote areas.Since the sensor node is battery powered,all the sensor nodes should collaborate together to form a fault tolerant network so as toprovide an efficient utilization of precious network resources like wireless channel,memory and battery capacity.The most crucial constraint is the energy consumption which has become the prime challenge for the design of long lived sensor nodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production.This paper describes the application of wireless sensor network for crop monitoring in the paddy fields of kuttand, a region of Kerala, the southern state of India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Wireless Sensor Networks (WSN), neglecting the effects of varying channel quality can lead to an unnecessary wastage of precious battery resources and in turn can result in the rapid depletion of sensor energy and the partitioning of the network. Fairness is a critical issue when accessing a shared wireless channel and fair scheduling must be employed to provide the proper flow of information in a WSN. In this paper, we develop a channel adaptive MAC protocol with a traffic-aware dynamic power management algorithm for efficient packet scheduling and queuing in a sensor network, with time varying characteristics of the wireless channel also taken into consideration. The proposed protocol calculates a combined weight value based on the channel state and link quality. Then transmission is allowed only for those nodes with weights greater than a minimum quality threshold and nodes attempting to access the wireless medium with a low weight will be allowed to transmit only when their weight becomes high. This results in many poor quality nodes being deprived of transmission for a considerable amount of time. To avoid the buffer overflow and to achieve fairness for the poor quality nodes, we design a Load prediction algorithm. We also design a traffic aware dynamic power management scheme to minimize the energy consumption by continuously turning off the radio interface of all the unnecessary nodes that are not included in the routing path. By Simulation results, we show that our proposed protocol achieves a higher throughput and fairness besides reducing the delay

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production. This paper describes the security issues related to wireless sensor networks and suggests some techniques for achieving system security. This paper also discusses a protocol that can be adopted for increasing the security of the transmitted data

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wednesday 19th March 2014 Speaker(s): Kirk Martinez, Dr Jonathon S Hare and Dr Enrico Costanza Organiser: Dr Tim Chown Time: 19/03/2014 11:00-11:50 Location: B32/3077 File size: 676 Mb Abstract The new WAIS seminar series features classic seminars, research discussions, tutorial-style presentations, and research debates. This seminar takes the form of a research discussion which will focus on the Internet of Things (IoT) research being undertaken in WAIS and other research groups in ECS. IoT is a significant emerging research area, with funding for research available from many channels including new H2020 programmes and the TSB. We have seen examples of IoT devices being built in WAIS and other ECS groups, e.g. in sensor networking, energy monitoring via Zigbee devices, and of course Erica the Rhino (a Big Thing!). The goal of the session is to briefly present such examples of existing Things in our lab with the intent of seeding discussion on open research questions, and therefore future work we could do towards new Things being deployed for experimentation in Building 32 or its environs. The session will discuss what 'things' we have, how they work, what new 'things' might we want to create and deploy, what components we might need to enable this, and how we might interact with these objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using Wireless Sensor Networks (WSNs) in healthcare systems has had a lot of attention in recent years. In much of this research tasks like sensor data processing, health states decision making and emergency message sending are done by a remote server. Many patients with lots of sensor data consume a great deal of communication resources, bring a burden to the remote server and delay the decision time and notification time. A healthcare application for elderly people using WSN has been simulated in this paper. A WSN designed for the proposed healthcare application needs efficient MAC and routing protocols to provide a guarantee for the reliability of the data delivered from the patients to the medical centre. Based on these requirements, A cross layer based on the modified versions of APTEEN and GinMAC has been designed and implemented, with new features, such as a mobility module and routes discovery algorithms have been added. Simulation results show that the proposed cross layer based protocol can conserve energy for nodes and provide the required performance such as life time of the network, delay and reliability for the proposed healthcare application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Connectivity is the basic factor for the proper operation of any wireless network. In a mobile wireless sensor network it is a challenge for applications and protocols to deal with connectivity problems, as links might get up and down frequently. In these scenarios, having knowledge of the node remaining connectivity time could both improve the performance of the protocols (e.g. handoff mechanisms) and save possible scarce nodes resources (CPU, bandwidth, and energy) by preventing unfruitful transmissions. The current paper provides a solution called Genetic Machine Learning Algorithm (GMLA) to forecast the remainder connectivity time in mobile environments. It consists in combining Classifier Systems with a Markov chain model of the RF link quality. The main advantage of using an evolutionary approach is that the Markov model parameters can be discovered on-the-fly, making it possible to cope with unknown environments and mobility patterns. Simulation results show that the proposal is a very suitable solution, as it overcomes the performance obtained by similar approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis regards the Wireless Sensor Network (WSN), as one of the most important technologies for the twenty-first century and the implementation of different packet correcting erasure codes to cope with the ”bursty” nature of the transmission channel and the possibility of packet losses during the transmission. The limited battery capacity of each sensor node makes the minimization of the power consumption one of the primary concerns in WSN. Considering also the fact that in each sensor node the communication is considerably more expensive than computation, this motivates the core idea to invest computation within the network whenever possible to safe on communication costs. The goal of the research was to evaluate a parameter, for example the Packet Erasure Ratio (PER), that permit to verify the functionality and the behavior of the created network, validate the theoretical expectations and evaluate the convenience of introducing the recovery packet techniques using different types of packet erasure codes in different types of networks. Thus, considering all the constrains of energy consumption in WSN, the topic of this thesis is to try to minimize it by introducing encoding/decoding algorithms in the transmission chain in order to prevent the retransmission of the erased packets through the Packet Erasure Channel and save the energy used for each retransmitted packet. In this way it is possible extend the lifetime of entire network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses on the energy efficiency in wireless networks under the transmission and information diffusion points of view. In particular, on one hand, the communication efficiency is investigated, attempting to reduce the consumption during transmissions, while on the other hand the energy efficiency of the procedures required to distribute the information among wireless nodes in complex networks is taken into account. For what concerns energy efficient communications, an innovative transmission scheme reusing source of opportunity signals is introduced. This kind of signals has never been previously studied in literature for communication purposes. The scope is to provide a way for transmitting information with energy consumption close to zero. On the theoretical side, starting from a general communication channel model subject to a limited input amplitude, the theme of low power transmission signals is tackled under the perspective of stating sufficient conditions for the capacity achieving input distribution to be discrete. Finally, the focus is shifted towards the design of energy efficient algorithms for the diffusion of information. In particular, the endeavours are aimed at solving an estimation problem distributed over a wireless sensor network. The proposed solutions are deeply analyzed both to ensure their energy efficiency and to guarantee their robustness against losses during the diffusion of information (against information diffusion truncation more in general).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a link layer stack for wireless sensor networks, which consists of the Burst-aware Energy-efficient Adaptive Medium access control (BEAM) and the Hop-to-Hop Reliability (H2HR) protocol. BEAM can operate with short beacons to announce data transmissions or include data within the beacons. Duty cycles can be adapted by a traffic prediction mechanism indicating pending packets destined for a node and by estimating its wake-up times. H2HR takes advantage of information provided by BEAM such as neighbour information and transmission information to perform per-hop congestion control. We justify the design decisions by measurements in a real-world wireless sensor network testbed and compare the performance with other link layer protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is a summary of the main contribu- tions of the PhD thesis published in [1]. The main research contributions of the thesis are driven by the research question how to design simple, yet efficient and robust run-time adaptive resource allocation schemes within the commu- nication stack of Wireless Sensor Network (WSN) nodes. The thesis addresses several problem domains with con- tributions on different layers of the WSN communication stack. The main contributions can be summarized as follows: First, a a novel run-time adaptive MAC protocol is intro- duced, which stepwise allocates the power-hungry radio interface in an on-demand manner when the encountered traffic load requires it. Second, the thesis outlines a metho- dology for robust, reliable and accurate software-based energy-estimation, which is calculated at network run- time on the sensor node itself. Third, the thesis evaluates several Forward Error Correction (FEC) strategies to adap- tively allocate the correctional power of Error Correcting Codes (ECCs) to cope with timely and spatially variable bit error rates. Fourth, in the context of TCP-based communi- cations in WSNs, the thesis evaluates distributed caching and local retransmission strategies to overcome the perfor- mance degrading effects of packet corruption and trans- mission failures when transmitting data over multiple hops. The performance of all developed protocols are eval- uated on a self-developed real-world WSN testbed and achieve superior performance over selected existing ap- proaches, especially where traffic load and channel condi- tions are suspect to rapid variations over time.