962 resultados para Integrative Water Research
Resumo:
A combination of experimental methods was applied at a clogged, horizontal subsurface flow (HSSF) municipal wastewater tertiary treatment wetland (TW) in the UK, to quantify the extent of surface and subsurface clogging which had resulted in undesirable surface flow. The three dimensional hydraulic conductivity profile was determined, using a purpose made device which recreates the constant head permeameter test in-situ. The hydrodynamic pathways were investigated by performing dye tracing tests with Rhodamine WT and a novel multi-channel, data-logging, flow through Fluorimeter which allows synchronous measurements to be taken from a matrix of sampling points. Hydraulic conductivity varied in all planes, with the lowest measurement of 0.1 md1 corresponding to the surface layer at the inlet, and the maximum measurement of 1550 md1 located at a 0.4m depth at the outlet. According to dye tracing results, the region where the overland flow ceased received five times the average flow, which then vertically short-circuited below the rhizosphere. The tracer break-through curve obtained from the outlet showed that this preferential flow-path accounted for approximately 80% of the flow overall and arrived 8 h before a distinctly separate secondary flow-path. The overall volumetric efficiencyof the clogged system was 71% and the hydrology was simulated using a dual-path, dead-zone storage model. It is concluded that uneven inlet distribution, continuous surface loading and high rhizosphere resistance is responsible for the clog formation observed in this system. The average inlet hydraulic conductivity was 2 md1, suggesting that current European design guidelines, which predict that the system will reach an equilibrium hydraulic conductivity of 86 md1, do not adequately describe the hydrology of mature systems.
Resumo:
This paper reviews the state of the art in measuring, modeling, and managing clogging in subsurface-flow treatment wetlands. Methods for measuring in situ hydraulic conductivity in treatment wetlands are now available, which provide valuable insight into assessing and evaluating the extent of clogging. These results, paired with the information from more traditional approaches (e.g., tracer testing and composition of the clog matter) are being incorporated into the latest treatment wetland models. Recent finite element analysis models can now simulate clogging development in subsurface-flow treatment wetlands with reasonable accuracy. Various management strategies have been developed to extend the life of clogged treatment wetlands, including gravel excavation and/or washing, chemical treatment, and application of earthworms. These strategies are compared and available cost information is reported. © 2012 Elsevier Ltd.
Resumo:
Nature-based solutions promoting green and blue urban areas have significant potential to decrease the vulnerability and enhance the resilience of cities in light of climatic change. They can thereby help to mitigate climate change-induced impacts and serve as proactive adaptation options for municipalities. We explore the various contexts in which nature-based solutions are relevant for climate mitigation and adaptation in urban areas, identify indicators for assessing the effectiveness of nature-based solutions and related knowledge gaps. In addition, we explore existing barriers and potential opportunities for increasing the scale and effectiveness of nature-based solution implementation. The results were derived from an inter- and transdisciplinary workshop with experts from research, municipalities, policy, and society. As an outcome of the workshop discussions and building on existing evidence, we highlight three main needs for future science and policy agendas when dealing with nature-based solutions: (i) produce stronger evidence on nature-based solutions for climate change adaptation and mitigation and raise awareness by increasing implementation; (ii) adapt for governance challenges in implementing nature-based solutions by using reflexive approaches, which implies bringing together new networks of society, nature-based solution ambassadors, and practitioners; (iii) consider socio-environmental justice and social cohesion when implementing nature-based solutions by using integrated governance approaches that take into account an integrative and transdisciplinary participation of diverse actors. Taking these needs into account, nature-based solutions can serve as climate mitigation and adaptation tools that produce additional cobenefits for societal well-being, thereby serving as strong investment options for sustainable urban planning.
Resumo:
Reverse osmosis (RO) brine produced at a full-scale coal seam gas (CSG) water treatment facility was characterized with spectroscopic and other analytical techniques. A number of potential scalants including silica, calcium, magnesium, sulphates and carbonates, all of which were present in dissolved and non-dissolved forms, were characterized. The presence of spherical particles with a size range of 10-1000nm and aggregates of 1-10 microns was confirmed by transmission electron microscopy (TEM). Those particulates contained the following metals in decreasing order: K, Si, Sr, Ca, B, Ba, Mg, P, and S. Characterization showed that nearly one-third of the total silicon in the brine was present in the particulates. Further, analysis of the RO brine suggested supersaturation and precipitation of metal carbonates and sulphates during the RO process should take place and could be responsible for subsequently capturing silica in the solid phase. However, the precipitation of crystalline carbonates and sulphates are complex. X-ray diffraction analysis did not confirm the presence of common calcium carbonates or sulphates but instead showed the presence of a suite of complex minerals, to which amorphous silica and/or silica rich compounds could have adhered. A filtration study showed that majority of the siliceous particles were less than 220nm in size, but could still be potentially captured using a low molecular weight ultrafiltration membrane. © 2015 Elsevier Ltd.
Resumo:
Density, species composition and antimicrobial resistance in bacteria of the Enterococcus genus were evaluated in seawater and sands from 2 marine recreational beaches with different levels of pollution. The 2 beaches showed predominance of Enterococcus faecalis and Enterococcus faecium, in the water and the sand. Dry sand presented higher densities of Enterococcus sp. and higher frequency of resistant strains than wet sand and seawater. The beach with a higher degree of pollution presented higher percentages of resistant strains (66.7% and 61.5%, in sand and in water, respectively) and resistance to a larger number of antimicrobials compared with the less polluted beach, Ilha Porchat (35.7% and 31.25% of resistant strains in sand and water, respectively). in water samples, the highest frequencies of resistance were obtained against streptomycin (38.5%) and erythromycin (25%), whilst in sand, the highest frequencies were observed in relation to erythromycin and tetracycline (38.1% and 14.3%, respectively). These results show that water and sands from beaches with high indexes of faecal contamination of human origin may be potential sources of contamination by pathogens and contribute to the dissemination of bacterial resistance. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Zero valent iron nanoparticles (nZVI) represent a promising agent for environmental remediation. Nevertheless, their application presents some limitations regarding their rapid oxidation and aggregation in the media. The aim of this study was to determine the effect that nZVI aging has in heavy metal remediation in water. Contaminants studied were Zn, Cd, Ni, Cu and Cr, which are typical elements found in ground and wastewater. Results show a high contaminant removal capacity by the nZVI in the first 2 h of reaction. Nevertheless, for longer reaction times, some of the metal ions that had already been adsorbed in the nZVI were delivered to the water. Cd and Ni show the maximum delivery percentages (65 and 27% respectively after 21 days of contact time). The starting delivery time was shortened when applying lower nZVI amounts. No re-dissolution of Cr was observed in any circumstance because it was the only element incorporated into the nanoparticles core, as TEM images showed. Contaminant release from nZVI is probably due to nanoparticles oxidation caused by aging, which produced a pH decrease and nZVI surface crystallization.
Resumo:
Enquadrado no Projeto SOPHIA será apresentada a Diretiva Quadro da Estratégia Marinha: Objetivos, organização e estado de implementação. Será destacado o conceito “Bom estado Ambiental”. O projeto SOPHIA – Conhecimento para a Gestão do Ambiente Marinho, desenvolve‐se em torno da Diretiva Quadro Estratégia Marinha (DQEM) e consiste num projeto facilitador e fomentador da comunicação de cientistas e da sociedade civil em volta das múltiplas áreas do conhecimento sobre os ecossistemas marinhos. Este projeto encontrase integrado o programa de medidas da DQEM que tem por finalidade o aumento de literacia do ambiente marinho para mobilizar e sensibilizar a sociedade civil para conservação e gestão do mar. Desenvolve‐se em parceria da Direção‐Geral de Recursos Naturais, Segurança e Serviços Marítimos (DGRM), com as Universidades (FCUL, Évora e Açores) e com a Escola Superior de Comunicação Social (ESCS), para a produção de conteúdos e da comunicação. Beneficia da estreita colaboração com representantes do Norwegian Institute for Water Research (NIVA) e do Norwegian Institute for Air Research (NILU) e com especialistas portugueses em Direito do Mar, que participam ativamente no desenvolvimento dos conteúdos científicos para os módulos e para os guias de formação.
Resumo:
Our review has demonstrated that small firm growth is a complex phenomenon. The concept ‘growth’ denotes both a change in amount and the process by which that change is attained. Further, the growth can be achieved in different ways and with varying degrees of regularity, and it manifests itself along several different dimensions such as sales, employment, and accumulation of assets. This complexity has naturally led researchers to adopt different approaches to studying growth and to use different measures to assess it. Further, although our review shows that it can fruitfully be regarded as a growth issue, the research on small firms' internationalization has largely developed as a separate stream. Similarly, other relatively separate literatures have evolved, which effectively focus on different modes of growth although mostly without regarding the studies first and foremost as growth studies. This goes for topics such as mergers and acquisitions, diversification, and integration - research streams which have largely ignored the particularities of small firms and which in turn have been largely ignored among researchers focusing on small firm growth.
Resumo:
Human and ecosystem health impacts imposed by water pollution are a major problem in the urban areas of Sri Lanka. A primary source of pollutants to urban water sources is atmospheric particles. Hence, it is important to develop a detailed understanding of atmospheric particle characteristics, their sources of origin and the transport pathways. Several research studies have been conducted in Sri Lanka on atmospheric pollution and these studies have tended to differ in their scope, study region and the investigated pollutants. The objectives of this paper are: (1) to report the outcomes of a detailed state-of-art literature review of atmospheric pollution related studies in Sri Lanka to understand the current trends and (2) to discuss the future research activities necessary to generate the important knowledge required for the development of effective strategies to control the adverse impacts of atmospheric pollution on urban waterways.