989 resultados para Instrumented buoy
Resumo:
The authors would like to express their gratitude to their supporters. Drs Jim Cousins, S.R. Uma and Ken Gledhill facilitated this research by providing access to GeoNet seismic data and structural building information. Piotr Omenzetter’s work within the Lloyd’s Register Foundation Centre for Safety and Reliability Engineering at the University of Aberdeen is supported by Lloyd’s Register Foundation. The Foundation helps to protect life and property by supporting engineering-related education, public engagement and the application of research.
Resumo:
The authors would like to express their gratitude to their supporters. Drs Jim Cousins, S.R. Uma and Ken Gledhill facilitated this research by providing access to GeoNet seismic data and structural building information. Piotr Omenzetter’s work within the Lloyd’s Register Foundation Centre for Safety and Reliability Engineering at the University of Aberdeen is supported by Lloyd’s Register Foundation. The Foundation helps to protect life and property by supporting engineering-related education, public engagement and the application of research.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
SARAL/AltiKa GDR-T are analyzed to assess the quality of the significant wave height (SWH) measurements. SARAL along-track SWH plots reveal cases of erroneous data, more or less isolated, not detected by the quality flags. The anomalies are often correlated with strong attenuation of the Ka-band backscatter coefficient, sensitive to clouds and rain. A quality test based on the 1Hz standard deviation is proposed to detect such anomalies. From buoy comparison, it is shown that SARAL SWH is more accurate than Jason-2, particularly at low SWH, and globally does not require any correction. Results are better with open ocean than with coastal buoys. The scatter and the number of outliers are much larger for coastal buoys. SARAL is then compared with Jason-2 and Cryosat-2. The altimeter data are extracted from the global altimeter SWH Ifremer data base, including specific corrections to calibrate the various altimeters. The comparison confirms the high quality of SARAL SWH. The 1Hz standard deviation is much less than for Jason-2 and Cryosat-2, particularly at low SWH. Furthermore, results show that the corrections applied to Jason-2 and to Cryosat-2, in the data base, are efficient, improving the global agreement between the three altimeters.
Analysis of urban infrastructure for sustainable mobility through instrumented bicycles for students
Resumo:
In Europe almost 80% of the continent's population lives in cities. It is estimated that by 2030 most regions in Europe which contain major cities will have even more inhabitants on 35–60% more than now. This process generates a consequent elevate human pressure on the natural environment, especially around large urban agglomerations. Cities could be seen as an ecosystem, represented by the dominance of humans that re-distribute organisms and fluxes and represent the result of co-evolving human and natural systems, emerging from the interactions between humans, natural and infrastructures. Roads have a relevant role in building links between urban components, creating the basis on which it is founded the urban ecosystem itself. This thesis is focused on the research for a comprehensive model, framed in European urban health & wellbeing programme, aimed to evaluate the determinants of health in urban populations. Through bicycles, GPS and sensor kits, specially developed and produced by University of Bologna for this purpose, it has been possible to conduct on Bologna different direct observations that oriented the novelty of the research: the categorization of university students cyclists, connection among environmental data awareness and level of cycling, and an early identification of urban attributes able to impact on road air quality and level of cycling. The categorization of university students’ cyclist has been defined through GPS analysis and focused survey, that both permit to identify behavioural and technical variables and attitudes towards urban cycling. The statistic relationship between level of cycling, seen as number of bicycles passages per lane and pollutants level, has been investigated through an inverse regression model, defined and tested through SPSS software on the basis of the data harvest. The research project that represents a sort of dynamic mobility laboratory on two wheels, that permits to harvest and study detected parameters.
Resumo:
The aim of this master’s thesis is to study the risky situations of the cyclist when they interact with road infrastructure and other road users as well as the influence of speed on safety. This research activity is linked with the SAFERUP (Sustainable, Accessible, Resilient, and Smart Urban Pavement) European funded project where one of the doctoral candidate has performed experiments on the bicycle simulation at the Gustave Eiffel university in the PICS-L laboratory (Paris) and instrumented bicycle at the Stockholm (Sweden). The approach of the experiment was to hire a number of people who have participated in the riding of the Instrumented bicycle (Stockholm) and bicycle simulator (PICS-L) which were developed by attaching different sensors and devices to measure important parameters of the bicycle riding and their data was collected to analysis in order to understand the behavior of the cyclist to improve the safety. In addition, a mobile eye tracker wore by participants to record the real experiment scenario, and after the end of the trip, each participant shared their remarks regarding their experience of bicycle riding according to different portions of the road infrastructure. In this research main focus is to analyze the relevant data such as speed profiles, video recordings and questionnaire surveys from the instrumented bicycle experiment. In fact, critical situations, where there was a higher probability, were compared with the subjective evaluation of the participant to be conscious of the issues related to the safety and comfort of the cyclist in different road characteristics.
Resumo:
Tomatoes are one of the most important vegetable crops grown in Brazil and are among the crops that have one of the highest post-harvest losses indexes in the country. The present work aimed at evaluating impact damage observed in packing lines of fresh tomatoes as well as to determine, under laboratory conditions, quality alterations of tomato fruits submitted to impact damage in different surface types. Critical points evaluation was accomplished using an instrumented sphere. Critical transference points found showed variations in acceleration levels from 30 to 129 G (m s-2). Tests carried out under laboratory conditions showed that padded surfaces reduced up to 31% impact damage. Incidence of severe internal physical damage was evaluated by a subjective scale and increased by 79% on hard surfaces for the highest fall drop. On the other hand, it was observed an effective reduction in physical damage on fruits when padded surfaces were used. When a 10-cm drop was performed, the maximum reduction measured was 10% for hard surfaces and 5% for previously padded surfaces. For quality parameters, it was observed for high drops on hard surfaces, highest values for weight loss, total acidity, lower values for vitamin C and Soluble Solids.