935 resultados para Input-output model
Resumo:
In this work we explore optimising parameters of a physical circuit model relative to input/output measurements, using the Dallas Rangemaster Treble Booster as a case study. A hybrid metaheuristic/gradient descent algorithm is implemented, where the initial parameter sets for the optimisation are informed by nominal values from schematics and datasheets. Sensitivity analysis is used to screen parameters, which informs a study of the optimisation algorithm against model complexity by fixing parameters. The results of the optimisation show a significant increase in the accuracy of model behaviour, but also highlight several key issues regarding the recovery of parameters.
Resumo:
In this contribution, a system identification procedure of a two-input Wiener model suitable for the analysis of the disturbance behavior of integrated nonlinear circuits is presented. The identified block model is comprised of two linear dynamic and one static nonlinear block, which are determined using an parameterized approach. In order to characterize the linear blocks, an correlation analysis using a white noise input in combination with a model reduction scheme is adopted. After having characterized the linear blocks, from the output spectrum under single tone excitation at each input a linear set of equations will be set up, whose solution gives the coefficients of the nonlinear block. By this data based black box approach, the distortion behavior of a nonlinear circuit under the influence of an interfering signal at an arbitrary input port can be determined. Such an interfering signal can be, for example, an electromagnetic interference signal which conductively couples into the port of consideration. © 2011 Author(s).
Resumo:
In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the Output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input-output, state variable feedback pole assignment, International journal of Control 46 (1987) 1867-1881; C. Wang, P.C. Young, Direct digital control by input-output, state variable feedback: theoretical background, International journal of Control 47 (1988) 97-109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We study the scattering of the quantized electromagnetic field from a linear, dispersive dielectric using the scattering formalism for quantum fields. The medium is modeled as a collection of harmonic oscillators with a number of distinct resonance frequencies. This model corresponds to the Sellmeir expansion, which is widely used to describe experimental data for real dispersive media. The integral equation for the interpolating field in terms of the in field is solved and the solution used to find the out field. The relation between the ill and out creation and annihilation operators is found that allows one to calculate the S matrix for this system. In this model, we find that there are absorption bands, but the input-output relations are completely unitary. No additional quantum-noise terms are required.
Resumo:
This paper presents a predictive optimal matrix converter controller for a flywheel energy storage system used as Dynamic Voltage Restorer (DVR). The flywheel energy storage device is based on a steel seamless tube mounted as a vertical axis flywheel to store kinetic energy. The motor/generator is a Permanent Magnet Synchronous Machine driven by the AC-AC Matrix Converter. The matrix control method uses a discrete-time model of the converter system to predict the expected values of the input and output currents for all the 27 possible vectors generated by the matrix converter. An optimal controller minimizes control errors using a weighted cost functional. The flywheel and control process was tested as a DVR to mitigate voltage sags and swells. Simulation results show that the DVR is able to compensate the critical load voltage without delays, voltage undershoots or overshoots, overcoming the input/output coupling of matrix converters.
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
An ever increasing need for extra functionality in a single embedded system demands for extra Input/Output (I/O) devices, which are usually connected externally and are expensive in terms of energy consumption. To reduce their energy consumption, these devices are equipped with power saving mechanisms. While I/O device scheduling for real-time (RT) systems with such power saving features has been studied in the past, the use of energy resources by these scheduling algorithms may be improved. Technology enhancements in the semiconductor industry have allowed the hardware vendors to reduce the device transition and energy overheads. The decrease in overhead of sleep transitions has opened new opportunities to further reduce the device energy consumption. In this research effort, we propose an intra-task device scheduling algorithm for real-time systems that wakes up a device on demand and reduces its active time while ensuring system schedulability. This intra-task device scheduling algorithm is extended for devices with multiple sleep states to further minimise the overall device energy consumption of the system. The proposed algorithms have less complexity when compared to the conservative inter-task device scheduling algorithms. The system model used relaxes some of the assumptions commonly made in the state-of-the-art that restrict their practical relevance. Apart from the aforementioned advantages, the proposed algorithms are shown to demonstrate the substantial energy savings.
Resumo:
Doutoramento em Economia.
Resumo:
Recently there has been a renewed research interest in the properties of non survey updates of input-output tables and social accounting matrices (SAM). Along with the venerable and well known scaling RAS method, several alternative new procedures related to entropy minimization and other metrics have been suggested, tested and used in the literature. Whether these procedures will eventually substitute or merely complement the RAS approach is still an open question without a definite answer. The performance of many of the updating procedures has been tested using some kind of proximity or closeness measure to a reference input-output table or SAM. The first goal of this paper, in contrast, is the proposal of checking the operational performance of updating mechanisms by way of comparing the simulation results that ensue from adopting alternative databases for calibration of a reference applied general equilibrium model. The second goal is to introduce a new updatin! g procedure based on information retrieval principles. This new procedure is then compared as far as performance is concerned to two well-known updating approaches: RAS and cross-entropy. The rationale for the suggested cross validation is that the driving force for having more up to date databases is to be able to conduct more current, and hopefully more credible, policy analyses.
Resumo:
In previous work we have applied the environmental multi-region input-output (MRIO) method proposed by Turner et al (2007) to examine the ‘CO2 trade balance’ between Scotland and the Rest of the UK. In McGregor et al (2008) we construct an interregional economy-environment input-output (IO) and social accounting matrix (SAM) framework that allows us to investigate methods of attributing responsibility for pollution generation in the UK at the regional level. This facilitates analysis of the nature and significance of environmental spillovers and the existence of an environmental ‘trade balance’ between regions. While the existence of significant data problems mean that the quantitative results of this study should be regarded as provisional, we argue that the use of such a framework allows us to begin to consider questions such as the extent to which a devolved authority like the Scottish Parliament can and should be responsible for contributing to national targets for reductions in emissions levels (e.g. the UK commitment to the Kyoto Protocol) when it is limited in the way it can control emissions, particularly with respect to changes in demand elsewhere in the UK. However, while such analysis is useful in terms of accounting for pollution flows in the single time period that the accounts relate to, it is limited when the focus is on modelling the impacts of any marginal change in activity. This is because a conventional demand-driven IO model assumes an entirely passive supply-side in the economy (i.e. all supply is infinitely elastic) and is further restricted by the assumption of universal Leontief (fixed proportions) technology implied by the use of the A and multiplier matrices. In this paper we argue that where analysis of marginal changes in activity is required, a more flexible interregional computable general equilibrium approach that models behavioural relationships in a more realistic and theory-consistent manner, is more appropriate and informative. To illustrate our analysis, we compare the results of introducing a positive demand stimulus in the UK economy using both IO and CGE interregional models of Scotland and the rest of the UK. In the case of the latter, we demonstrate how more theory consistent modelling of both demand and supply side behaviour at the regional and national levels affect model results, including the impact on the interregional CO2 ‘trade balance’.
Resumo:
The application of multi-region environmental input-output (IO) analysis to the problem of accounting for emissions generation (and/or resource use) under different accounting principles has become increasingly common in the ecological and environmental economics literature in particular, with applications at the international and interregional subnational level. However, while environmental IO analysis is invaluable in accounting for pollution flows in the single time period that the accounts relate to, it is limited when the focus is on modelling the impacts of any marginal change in activity. This is because a conventional demand-driven IO model assumes an entirely passive supply-side in the economy (i.e. all supply is infinitely elastic) and is further restricted by the assumption of universal Leontief (fixed proportions) technology implied by the use of the A and multiplier matrices. Where analysis of marginal changes in activity is required, extension from an IO accounting framework to a more flexible interregional computable general equilibrium (CGE) approach, where behavioural relationships can be modelled in a more realistic and theory-consistent manner, is appropriate. Our argument is illustrated by comparing the results of introducing a positive demand stimulus in the UK economy using IO and CGE interregional models of Scotland and the rest of the UK. In the case of the latter, we demonstrate how more theory consistent modelling of both demand and supply side behaviour at the regional and national levels effect model results, including the impact on the interregional CO2 ‘trade balance’.
Resumo:
In an input-output context the impact of any particular industrial sector is commonly measured in terms of the output multiplier for that industry. Although such measures are routinely calculated and often used to guide regional industrial policy the behaviour of such measures over time is an area that has attracted little academic study. The output multipliers derived from any one table will have a distribution; for some industries the multiplier will be relatively high, for some it will be relatively low. The recentpublication of consistent input-output tables for the Scottish economy makes it possible to examine trends in this mdistribution over the ten year period 1998-2007. This is done by comparing the means and other summary measures of the distributions, the histograms and the cumulative densities. The results indicate a tendency for the multipliers to increase over the period. A Markov chain modelling approach suggests that this drift is a slow but long term phenomenon which appears not to tend to an equilibrium state. The prime reason for the increase in the output multipliers is traced to a decline in the relative importance of imported (both from the rest of the UK and the rest of the world) intermediate inputs used by Scottish industries. This suggests that models calibrated on the set of tables might have to be interpreted with caution.
Resumo:
This paper examines how appropriately to attribute economic impact to consumption expenditures. Consumption expenditures are often treated as either wholly endogenous or wholly exogenous, following a distinction from Input-Output analysis. For many applications, such as those focusing on the impacts of tourism or benefits systems, such binomial assumptions are not satisfactory. We argue that consumption is neither wholly endogenous nor wholly exogenous but that the degree of this distinction is rather an empirical matter. We set out a general model for the treatment of consumption expenditures and illustrate its application through the case of university students. We examine individual student groups and how the impacts of students at particular institutions. Furthermore we take into account the binding budget constraint of public expenditures (as is the case for devolved regions in the UK)and examine how this affects the impact attributed to students' consumption expenditures.
Resumo:
Part of the local economic impact of a major sporting event comes from the associated temporary tourism expenditures. Typically demand-driven Input-Output (IO) methods are used to quantify the impacts of such expenditures. However, IO modelling has specific weaknesses when measuring temporary tourism impacts; particular problems lie in its treatment of factor supplies and its lack of dynamics. Recent work argues that Computable General Equilibrium (CGE) analysis is more appropriate and this has been widely applied. Neglected in this literature however is an understanding of the role that behavioural characteristics and factor supply assumptions play in determining the economic impact of tourist expenditures, particularly where expenditures are temporary (i.e. of limited duration) and anticipated (i.e. known in advance). This paper uses a CGE model for Scotland in which agents can have myopic- or forward-looking behaviours and shows how these alternative specifications affect the timing and scale of the economic impacts from anticipated and temporary tourism expenditure. The tourism shock analysed is of a scale expected for the Commonwealth Games to be held in Glasgow in 2014. The model shows how “pre-shock” and “legacy” effects – impacts before and after the shock – arise and their quantitative importance. Using the forward-looking model the paper calculates the optimal degree of pre-announcement.
Resumo:
This paper compares methods for calculating Input-Output (IO) Type II multipliers. These are formulations of the standard Leontief IO model which endogenise elements of household consumption. An analytical comparison of the two basic IO Type II multiplier methods with the Social Accounting Matrix (SAM) multiplier approach identifies the treatment of non-wage income generated in production as a central problem. The multiplier values for each of the IO and SAM methods are calculated using Scottish data for 2009. These results can be used to choose which Type II IO multiplier to adopt where SAM multiplier values are unavailable.