828 resultados para Input-output data
Resumo:
This paper translates the concepts of sustainable production to three dimensions of economic, environmental and ecological sustainability to analyze optimal production scales by solving optimizing problems. Economic optimization seeks input-output combinations to maximize profits. Environmental optimization searches for input-output combinations that minimize the polluting effects of materials balance on the surrounding environment. Ecological optimization looks for input-output combinations that minimize the cumulative destruction of the entire ecosystem. Using an aggregate space, the framework illustrates that these optimal scales are often not identical because markets fail to account for all negative externalities. Profit-maximizing firms normally operate at the scales which are larger than optimal scales from the viewpoints of environmental and ecological sustainability; hence policy interventions are favoured. The framework offers a useful tool for efficiency studies and policy implication analysis. The paper provides an empirical investigation using a data set of rice farms in South Korea.
Resumo:
Supervisory Control and Data Acquisition systems (SCADA) are widely used to control critical infrastructure automatically. Capturing and analyzing packet-level traffic flowing through such a network is an essential requirement for problems such as legacy network mapping and fault detection. Within the framework of captured network traffic, we present a simple modeling technique, which supports the mapping of the SCADA network topology via traffic monitoring. By characterizing atomic network components in terms of their input-output topology and the relationship between their data traffic logs, we show that these modeling primitives have good compositional behaviour, which allows complex networks to be modeled. Finally, the predictions generated by our model are found to be in good agreement with experimentally obtained traffic.
Resumo:
Increasingly larger scale applications are generating an unprecedented amount of data. However, the increasing gap between computation and I/O capacity on High End Computing machines makes a severe bottleneck for data analysis. Instead of moving data from its source to the output storage, in-situ analytics processes output data while simulations are running. However, in-situ data analysis incurs much more computing resource contentions with simulations. Such contentions severely damage the performance of simulation on HPE. Since different data processing strategies have different impact on performance and cost, there is a consequent need for flexibility in the location of data analytics. In this paper, we explore and analyze several potential data-analytics placement strategies along the I/O path. To find out the best strategy to reduce data movement in given situation, we propose a flexible data analytics (FlexAnalytics) framework in this paper. Based on this framework, a FlexAnalytics prototype system is developed for analytics placement. FlexAnalytics system enhances the scalability and flexibility of current I/O stack on HEC platforms and is useful for data pre-processing, runtime data analysis and visualization, as well as for large-scale data transfer. Two use cases – scientific data compression and remote visualization – have been applied in the study to verify the performance of FlexAnalytics. Experimental results demonstrate that FlexAnalytics framework increases data transition bandwidth and improves the application end-to-end transfer performance.
Resumo:
The objective of this paper is to provide a more comprehensive e±ciency measure to estimate the performance of OECD and non-OECD countries. A Russell directional distance function that appropriately credits the decision-making unit not only for increase in desirable outputs but also for the decrease of undesirable outputs is derived from the proposed weighted Russell directional distance model. The method was applied to a panel of 116 countries from 1992 to 2010. This framework also decomposes the comprehensive efficiency measure into individual input/ output components' inefficiency scores that are useful for policy making. The results reveal that the OECD countries perform better than the non-OECD countries in overall, goods,labor and capital efficiencies, but worse in bad and energy efficiencies.
Resumo:
This paper investigates the use of Genetic Programming (GP) to create an approximate model for the non-linear relationship between flexural stiffness, length, mass per unit length and rotation speed associated with rotating beams and their natural frequencies. GP, a relatively new form of artificial intelligence, is derived from the Darwinian concept of evolution and genetics and it creates computer programs to solve problems by manipulating their tree structures. GP predicts the size and structural complexity of the empirical model by minimizing the mean square error at the specified points of input-output relationship dataset. This dataset is generated using a finite element model. The validity of the GP-generated model is tested by comparing the natural frequencies at training and at additional input data points. It is found that by using a non-dimensional stiffness, it is possible to get simple and accurate function approximation for the natural frequency. This function approximation model is then used to study the relationships between natural frequency and various influencing parameters for uniform and tapered beams. The relations obtained with GP model agree well with FEM results and can be used for preliminary design and structural optimization studies.
Resumo:
Agriculture is an economic activity that heavily relies on the availability of natural resources. Through its role in food production agriculture is a major factor affecting public welfare and health, and its indirect contribution to gross domestic product and employment is significant. Agriculture also contributes to numerous ecosystem services through management of rural areas. However, the environmental impact of agriculture is considerable and reaches far beyond the agroecosystems. The questions related to farming for food production are, thus, manifold and of great public concern. Improving environmental performance of agriculture and sustainability of food production, sustainabilizing food production, calls for application of wide range of expertise knowledge. This study falls within the field of agro-ecology, with interphases to food systems and sustainability research and exploits the methods typical of industrial ecology. The research in these fields extends from multidisciplinary to interdisciplinary and transdisciplinary, a holistic approach being the key tenet. The methods of industrial ecology have been applied extensively to explore the interaction between human economic activity and resource use. Specifically, the material flow approach (MFA) has established its position through application of systematic environmental and economic accounting statistics. However, very few studies have applied MFA specifically to agriculture. The MFA approach was used in this thesis in such a context in Finland. The focus of this study is the ecological sustainability of primary production. The aim was to explore the possibilities of assessing ecological sustainability of agriculture by using two different approaches. In the first approach the MFA-methods from industrial ecology were applied to agriculture, whereas the other is based on the food consumption scenarios. The two approaches were used in order to capture some of the impacts of dietary changes and of changes in production mode on the environment. The methods were applied at levels ranging from national to sector and local levels. Through the supply-demand approach, the viewpoint changed between that of food production to that of food consumption. The main data sources were official statistics complemented with published research results and expertise appraisals. MFA approach was used to define the system boundaries, to quantify the material flows and to construct eco-efficiency indicators for agriculture. The results were further elaborated for an input-output model that was used to analyse the food flux in Finland and to determine its relationship to the economy-wide physical and monetary flows. The methods based on food consumption scenarios were applied at regional and local level for assessing feasibility and environmental impacts of relocalising food production. The approach was also used for quantification and source allocation of greenhouse gas (GHG) emissions of primary production. GHG assessment provided, thus, a means of crosschecking the results obtained by using the two different approaches. MFA data as such or expressed as eco-efficiency indicators, are useful in describing the overall development. However, the data are not sufficiently detailed for identifying the hot spots of environmental sustainability. Eco-efficiency indicators should not be bluntly used in environmental assessment: the carrying capacity of the nature, the potential exhaustion of non-renewable natural resources and the possible rebound effect need also to be accounted for when striving towards improved eco-efficiency. The input-output model is suitable for nationwide economy analyses and it shows the distribution of monetary and material flows among the various sectors. Environmental impact can be captured only at a very general level in terms of total material requirement, gaseous emissions, energy consumption and agricultural land use. Improving environmental performance of food production requires more detailed and more local information. The approach based on food consumption scenarios can be applied at regional or local scales. Based on various diet options the method accounts for the feasibility of re-localising food production and environmental impacts of such re-localisation in terms of nutrient balances, gaseous emissions, agricultural energy consumption, agricultural land use and diversity of crop cultivation. The approach is applicable anywhere, but the calculation parameters need to be adjusted so as to comply with the specific circumstances. The food consumption scenario approach, thus, pays attention to the variability of production circumstances, and may provide some environmental information that is locally relevant. The approaches based on the input-output model and on food consumption scenarios represent small steps towards more holistic systemic thinking. However, neither one alone nor the two together provide sufficient information for sustainabilizing food production. Environmental performance of food production should be assessed together with the other criteria of sustainable food provisioning. This requires evaluation and integration of research results from many different disciplines in the context of a specified geographic area. Foodshed area that comprises both the rural hinterlands of food production and the population centres of food consumption is suggested to represent a suitable areal extent for such research. Finding a balance between the various aspects of sustainability is a matter of optimal trade-off. The balance cannot be universally determined, but the assessment methods and the actual measures depend on what the bottlenecks of sustainability are in the area concerned. These have to be agreed upon among the actors of the area
Resumo:
Purpose: This study investigates boards of directors in small firms and explores the link between board effectiveness and the composition, roles and working styles of the boards. Design/methodology/approach: The study analyses data from a telephone survey of boards in 45 small firms. The survey included both the CEO and the chairperson of the board. Findings: The study identifies three groups of small firms: ‘paperboards’, ‘professional boards’, and ‘management lead’ boards. Results show that board composition, board roles and board working style influence board effectiveness in small firms. Research limitations/implications: Although the present study has found a link between board effectiveness and the role, composition and working style of boards of small firms, other potentially influential factors are also worthy of investigation; for example, the personal characteristics of the individuals involved, generational factors in family firms, and the situational circumstances of various firms. Practical implications: The study reveals that, in practice, the management team and the board are substantially intertwined in small firms. Originality/value: The main contributions are that the study explores how boards in small firms actually function and gives a detailed account of their composition and roles.More insight into this issue is important given the overemphasis within the governance literature on input-output studies using samples of large publiclylisted firms.
Resumo:
This paper presents an artificial feed forward neural network (FFNN) approach for the assessment of power system voltage stability. A novel approach based on the input-output relation between real and reactive power, as well as voltage vectors for generators and load buses is used to train the neural net (NN). The input properties of the feed forward network are generated from offline training data with various simulated loading conditions using a conventional voltage stability algorithm based on the L-index. The neural network is trained for the L-index output as the target vector for each of the system loads. Two separate trained NN, corresponding to normal loading and contingency, are investigated on the 367 node practical power system network. The performance of the trained artificial neural network (ANN) is also investigated on the system under various voltage stability assessment conditions. As compared to the computationally intensive benchmark conventional software, near accurate results in the value of L-index and thus the voltage profile were obtained. Proposed algorithm is fast, robust and accurate and can be used online for predicting the L-indices of all the power system buses. The proposed ANN approach is also shown to be effective and computationally feasible in voltage stability assessment as well as potential enhancements within an overall energy management system in order to determining local and global stability indices
Resumo:
Adaptive Mesh Refinement is a method which dynamically varies the spatio-temporal resolution of localized mesh regions in numerical simulations, based on the strength of the solution features. In-situ visualization plays an important role for analyzing the time evolving characteristics of the domain structures. Continuous visualization of the output data for various timesteps results in a better study of the underlying domain and the model used for simulating the domain. In this paper, we develop strategies for continuous online visualization of time evolving data for AMR applications executed on GPUs. We reorder the meshes for computations on the GPU based on the users input related to the subdomain that he wants to visualize. This makes the data available for visualization at a faster rate. We then perform asynchronous executions of the visualization steps and fix-up operations on the CPUs while the GPU advances the solution. By performing experiments on Tesla S1070 and Fermi C2070 clusters, we found that our strategies result in 60% improvement in response time and 16% improvement in the rate of visualization of frames over the existing strategy of performing fix-ups and visualization at the end of the timesteps.
Resumo:
In this paper we present HyperCell as a reconfigurable datapath for Instruction Extensions (IEs). HyperCell comprises an array of compute units laid over a switch network. We present an IE synthesis methodology that enables post-silicon realization of IE datapaths on HyperCell. The synthesis methodology optimally exploits hardware resources in HyperCell to enable software pipelined execution of IEs. Exploitation of temporal reuse of data in HyperCell results in significant reduction of input/output bandwidth requirements of HyperCell.
Resumo:
提出了一种基于人工神经网络的全光纤化大量程实时距离干涉测量仪.采用双正弦相位调制方法,即通过同时调制半导体激光器的波长和干涉仪的光程差实现外差测量。为了扩大干涉仪的测量范围和消除输出信号中的交叉敏感,采用人工神经网络进行信号处理,把两路经过初步解调的干涉信号作为输入样本,物体距离的实际值作为输出样本,对神经网络进行训练,以使其具有良好的推广能力.实验结果表明神经网络的使用不仅扩大了距离的测量范围而且提高了测量精度.
Resumo:
In the field of mechanics, it is a long standing goal to measure quantum behavior in ever larger and more massive objects. It may now seem like an obvious conclusion, but until recently it was not clear whether a macroscopic mechanical resonator -- built up from nearly 1013 atoms -- could be fully described as an ideal quantum harmonic oscillator. With recent advances in the fields of opto- and electro-mechanics, such systems offer a unique advantage in probing the quantum noise properties of macroscopic electrical and mechanical devices, properties that ultimately stem from Heisenberg's uncertainty relations. Given the rapid progress in device capabilities, landmark results of quantum optics are now being extended into the regime of macroscopic mechanics.
The purpose of this dissertation is to describe three experiments -- motional sideband asymmetry, back-action evasion (BAE) detection, and mechanical squeezing -- that are directly related to the topic of measuring quantum noise with mechanical detection. These measurements all share three pertinent features: they explore quantum noise properties in a macroscopic electromechanical device driven by a minimum of two microwave drive tones, hence the title of this work: "Quantum electromechanics with two tone drive".
In the following, we will first introduce a quantum input-output framework that we use to model the electromechanical interaction and capture subtleties related to interpreting different microwave noise detection techniques. Next, we will discuss the fabrication and measurement details that we use to cool and probe these devices with coherent and incoherent microwave drive signals. Having developed our tools for signal modeling and detection, we explore the three-wave mixing interaction between the microwave and mechanical modes, whereby mechanical motion generates motional sidebands corresponding to up-down frequency conversions of microwave photons. Because of quantum vacuum noise, the rates of these processes are expected to be unequal. We will discuss the measurement and interpretation of this asymmetric motional noise in a electromechanical device cooled near the ground state of motion.
Next, we consider an overlapped two tone pump configuration that produces a time-modulated electromechanical interaction. By careful control of this drive field, we report a quantum non-demolition (QND) measurement of a single motional quadrature. Incorporating a second pair of drive tones, we directly measure the measurement back-action associated with both classical and quantum noise of the microwave cavity. Lastly, we slightly modify our drive scheme to generate quantum squeezing in a macroscopic mechanical resonator. Here, we will focus on data analysis techniques that we use to estimate the quadrature occupations. We incorporate Bayesian spectrum fitting and parameter estimation that serve as powerful tools for incorporating many known sources of measurement and fit error that are unavoidable in such work.
Resumo:
Esta pesquisa tem por objetivo analisar a organização curricular do PROEJA na Escola Técnica Estadual Ferreira Viana, uma das unidades da rede de ensino FAETEC, suas implicações no processo da formação humana e nos processos de subjetivação balizados em Foucault. Desta forma, buscouse descrever o desenvolvimento das políticas públicas implementadas pelo governo federal no período de 2009 a 2014, para a Educação Profissional de Jovens e Adultos, bem como discutir os efeitos desta implementação nesta rede de ensino. Adotouse a utilização de procedimentos metodológicos inicialmente através de uma análise documental e levantamento de dados estatísticos sobre entrada, retenção e saída de alunos. Após esta identificação foi realizado um registro de campo e entrevistas semi-estruturadas com os agentes envolvidos neste processo, no sentido de maior aproximação com o cotidiano de ensino desta unidade escolar. Por último e como foco principal, foi desenvolvido uma análise sobre a organização curricular do PROEJA na Escola Técnica Estadual Ferreira Viana da Rede de Ensino FAETEC, com o intuito de melhor compreender como se estabelecem as relações neste processo de sistematização curricular, tendo em vista a análise de sua estrutura, as ações estabelecidas pelos docentes na aplicação do ensino, a realidade vivida no processo de aprendizagem dos alunos, e os desafios da integração curricular e suas possíveis reformulações, frente às exigências da educação profissional no contexto atual da educação brasileira
Resumo:
An analysis of the factor-product relationship in the semi-intensive shrimp farming system of Kerala, farm basis and hectare basis, we are attempted and the results reported in this paper. The Cobb-Douglas model, in which the physical relationship between input and output is estimated, and the marginal analysis then employed to evaluate the producer behaviour, was used for the analysis. The study was based on empirical data collected during November 1994 to May 1996, covering three seasons, from 21 farms spread over Alappuzha, Ernakulam and Kasaragod districts of the state. The sample covered a total area of 61.06 ha. Of the 11 explanatory variables considered in the model, the size of the farm, casual labour and chemical fertilizers were found statistically significant. It was also observed that the factors such as age of pond, experience of the farmer, feed, miscellaneous costs, number of seed stocked and skilled labour contributed positively to the output. The estimated industry production function exhibited unitary economies of scale. The estimated mean output was 3937 kg/ha. The test of multi-co-linearity showed that there is no problem of dominant variable. On the basis of the marginal product and the given input-output prices, the optimum amounts of seed, feed and casual labour were estimated. They were about 97139 seed, 959 kg of feed and 585 man-days of casual labour per farm. This indicated the need for reducing the stocking density and amount of feed from the present levels, in order to maximise profit. Based on the finding of the study, suggestions for improving the industry production function are proposed.
Resumo:
© 2015 John P. Cunningham and Zoubin Ghahramani. Linear dimensionality reduction methods are a cornerstone of analyzing high dimensional data, due to their simple geometric interpretations and typically attractive computational properties. These methods capture many data features of interest, such as covariance, dynamical structure, correlation between data sets, input-output relationships, and margin between data classes. Methods have been developed with a variety of names and motivations in many fields, and perhaps as a result the connections between all these methods have not been highlighted. Here we survey methods from this disparate literature as optimization programs over matrix manifolds. We discuss principal component analysis, factor analysis, linear multidimensional scaling, Fisher's linear discriminant analysis, canonical correlations analysis, maximum autocorrelation factors, slow feature analysis, sufficient dimensionality reduction, undercomplete independent component analysis, linear regression, distance metric learning, and more. This optimization framework gives insight to some rarely discussed shortcomings of well-known methods, such as the suboptimality of certain eigenvector solutions. Modern techniques for optimization over matrix manifolds enable a generic linear dimensionality reduction solver, which accepts as input data and an objective to be optimized, and returns, as output, an optimal low-dimensional projection of the data. This simple optimization framework further allows straightforward generalizations and novel variants of classical methods, which we demonstrate here by creating an orthogonal-projection canonical correlations analysis. More broadly, this survey and generic solver suggest that linear dimensionality reduction can move toward becoming a blackbox, objective-agnostic numerical technology.