979 resultados para Inlay-retained fixed partial denture
Resumo:
Objective: To evaluate the planning and quality of plaster models for fabricati on of removable parti al dentures received from three commercial prosthodonti c laboratories located in the city of João Pessoa, PB, Brazil, which perform the casting procedures in their facilities. Methods: Forty 40 plaster models were photographed per laboratory, totalizing 120 models. The evaluation was performed using two questi onnaires, one designed for the dental prosthesis technicians, and another applied by the investigator for the visual evaluati on of the models. Data were analyzed using the SPSS soft ware version 13.0. Results: Ninety-two (76.7%) models did not present planning. In addition, no model presented references of insertion plane or guide pins. Calculati on of the mouth preparati on index (MPI) to evaluate the distribution of the oclusal and cingulum abutments or rests showed that 86 (71.7%) models were classifi ed as poor, 23 (19.2%) models as good and only 11 (9,.2%) models as acceptable. Defects were found in 102 (85%) models. Conclusion: The prosthodontists are not preparing the mouth of their pati ents, neglecti ng the planning of removable partial dentures, and passing this responsibility to the dental prosthesis technicians. In addition, the quality of the models sent to the laboratories was unsatisfactory.
Resumo:
Objective: To evaluate the planning and quality of plaster models for fabricati on of removable parti al dentures received from three commercial prosthodonti c laboratories located in the city of João Pessoa, PB, Brazil, which perform the casting procedures in their facilities. Methods: Forty 40 plaster models were photographed per laboratory, totalizing 120 models. The evaluation was performed using two questi onnaires, one designed for the dental prosthesis technicians, and another applied by the investigator for the visual evaluati on of the models. Data were analyzed using the SPSS soft ware version 13.0. Results: Ninety-two (76.7%) models did not present planning. In addition, no model presented references of insertion plane or guide pins. Calculati on of the mouth preparati on index (MPI) to evaluate the distribution of the oclusal and cingulum abutments or rests showed that 86 (71.7%) models were classifi ed as poor, 23 (19.2%) models as good and only 11 (9,.2%) models as acceptable. Defects were found in 102 (85%) models. Conclusion: The prosthodontists are not preparing the mouth of their pati ents, neglecti ng the planning of removable partial dentures, and passing this responsibility to the dental prosthesis technicians. In addition, the quality of the models sent to the laboratories was unsatisfactory.
Resumo:
An appropriate design of a prosthetic rehabilitation should not impute the restoration of occlusal vertical dimension (OVD) to new prostheses, at the risk of the patient does not adapt to a new condition, since a certain amount of time is often necessary for adaptation to a new OVD. This article performed prosthetic rehabilitation with an overlay provisional removable partial denture prior to definitive treatment because the patient showed a considerable decrease in the OVD. Three techniques for OVD determination were used. It is possible to conclude that the use of interim removable partial dentures is of great importance at the beginning of the rehabilitation treatment in order to adapt the patient to a new occlusal condition.
Resumo:
An appropriate design of a prosthetic rehabilitation should not impute the restoration of occlusal vertical dimension (OVD) to new prostheses, at the risk of the patient does not adapt to a new condition, since a certain amount of time is often necessary for adaptation to a new OVD. This article performed prosthetic rehabilitation with an overlay provisional removable partial denture prior to definitive treatment because the patient showed a considerable decrease in the OVD. Three techniques for OVD determination were used. It is possible to conclude that the use of interim removable partial dentures is of great importance at the beginning of the rehabilitation treatment in order to adapt the patient to a new occlusal condition.
Resumo:
Due to properties such as excellent biocompatibility, high resistance to corrosion and low specific weight, titanium has been considered a material of great interest for Dentistry. It has been widely used in implants and orthognathic surgeries. Recently, titanium has been seen as a feasible alternative for the fabrication of removable partial denture frameworks, either in pure titanium (99.75%) or in titanium alloy forms (Ti-6Al-4V; Ti-6A1-7Nb). Based on a review of the literature, this work studied the use of titanium for the fabrication of removable partial denture frameworks, focusing on its advantages and disadvantages as well as its characteristics. It was concluded that the use of titanium is a convenient option for partially edentulous arches rehabilitation with quite satisfactory and promising clinical results. However, the need for highly-equipped laboratories increases the cost, preventing its large scale use.
Resumo:
Due to properties such as excellent biocompatibility, high resistance to corrosion and low specific weight, titanium has been considered a material of great interest for Dentistry. It has been widely used in implants and orthognathic surgeries. Recently, titanium has been seen as a feasible alternative for the fabrication of removable partial denture frameworks, either in pure titanium (99.75%) or in titanium alloy forms (Ti-6Al-4V; Ti-6A1-7Nb). Based on a review of the literature, this work studied the use of titanium for the fabrication of removable partial denture frameworks, focusing on its advantages and disadvantages as well as its characteristics. It was concluded that the use of titanium is a convenient option for partially edentulous arches rehabilitation with quite satisfactory and promising clinical results. However, the need for highly-equipped laboratories increases the cost, preventing its large scale use.
Resumo:
A Prótese Parcial Removível esquelética na reabilitação de pacientes edêntulos parciais tem sido uma opção acessível, rápida e viável de restabelecer a função estética e fonética dos dentes perdidos, porém a grande problemática em torno deste tipo de reabilitação está nos casos de extremos livres uni e bilaterais que dependem do rebordo residual para sustentação, devido à falta de pilar posterior que pode comprometer a retenção e principalmente a estabilidade da prótese que estará sujeita a deslocamentos constantes durante a dinâmica dos movimentos funcionais. Na literatura é relatado que todos os conhecimentos devem ser observados a quando da confecção deste tipo de prótese, as explicações e orientações como se comporta este tipo de prótese e os cuidados que o paciente tem que ter, e principalmente as condições biológicas dos tecidos de suporte são da responsabilidade do Médico Dentista o qual ao ter em conta e transmitir estes conhecimentos no momento do planeamento consegue assim minimizar os riscos de fracasso. A impressão funcional é de extrema importância para o sucesso da reabilitação com este tipo de prótese, mais especificamente a técnica do modelo modificado, que o objeto deste trabalho é realçar a sua utilização. Sendo de especial interesse para a Medicina Dentária pela necessidade e demanda do tratamento clínico, quanto para o ensino nas universidades. Dessa forma este trabalho visa mostrar a importância da impressão funcional na Prótese Parcial Removível esquelética de extremo livre, em especial o modelo modificado, pois ela visa obter melhor estabilidade, suporte e retenção para conseguir um melhor conforto para o paciente, mantendo a integridade do periodonto e dos dentes de apoio, obtendo assim um bom prognóstico e sucesso no procedimento realizado, como forma de fazer com que este procedimento responda tanto a expectativa do paciente como da equipe que a confecciona.
Resumo:
Objectives: The present study used strain gauge analysis to perform an in vitro evaluation of the effect of axial loading on 3 elements of implant-supported partial fixed prostheses, varying the type of prosthetic cylinder and the loading points. Material and methods: Three internal hexagon implants were linearly embedded in a polyurethane block. Microunit abutments were connected to the implants applying a torque of 20 Ncm, and prefabricated Co-Cr cylinders and plastic prosthetic cylinders were screwed onto the abutments, which received standard patterns cast in Co-Cr alloy (n = 5). Four strain gauges (SG) were bonded onto the surface of the block tangentially to the implants, SG 01 mesially to implant 1, SG 02 and SG 03 mesially and distally to implant 2, respectively, and SG 04 distally to implant 3. Each metallic structure was screwed onto the abutments with a 10 Ncm torque and an axial load of 30 kg was applied at five predetermined points (A, B, C, D, E). The data obtained from the strain gauge analyses were analyzed statistically by RM ANOVA and Tukey's test, with a level of significance of p<0.05. Results: There was a significant difference for the loading point (p=0.0001), with point B generating the smallest microdeformation (239.49 με) and point D the highest (442.77 με). No significant difference was found for the cylinder type (p=0.748). Conclusions: It was concluded that the type of cylinder did not affect in the magnitude of microdeformation, but the axial loading location influenced this magnitude.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to compare the stress distribution induced by posterior functional loads on conventional complete dentures and implant-retained overdentures with different attachment systems using a two-dimentional Finite Element Analysis (FEA-2D). Three models representative of edentulous mandible were constructed on AutoCAD software; Group A (control), a model of edentulous mandible supporting a complete denture; Group B, a model of edentulous mandible supporting an overdenture over two splinted implants connected with the bar-clip system; Group C, a model of edentuluos mandible supporting an overdenture over two unsplinted impants with the O-ring system. Evaluation was conducted on Ansys software, with a vertical force of 100 N applied on the mandibular left first molar. When the stress was evaluated in supporting tissues, groups B (51.0 MPa) and C (52.6 MPa) demonstrated higher stress values than group A (10.1 MPa). Within the limits of this study, it may be conclued that the use of an attachment system increased stress values; furthermore, the use of splinted implants associated with the bar-clip attachment system favoured a lower stress distribution over the supporting tissue than the unsplinted implants with an O-ring abutment to retain the manibular overdenture.
Resumo:
This finite element analysis compared stress distribution on complete dentures and implant-retained overdentures with different attachment systems. Four models of edentulous mandible were constructed: group A (control), complete denture; group B, overdenture retained by 2 splinted implants with bar-clip system; group C, overdenture retained by 2 unsplinted implants with o'ring system; and group D, overdenture retained by 2 splinted implants with bar-clip and 2 distally placed o'ring system. Evaluation was performed on Ansys software, with 100-N vertical load applied on central incisive teeth. The lowest maximum general stress value (in megapascal) was observed in group A (64.305) followed by groups C (119.006), D (258.650), and B (349.873). The same trend occurred it) supporting tissues with the highest stress value for cortical bone. Unsplinted implants associated with the o'ring attachment system showed the lowest maximum stress values among all overdenture groups. Furthermore, o'ring system also improved stress distribution when associated with bar-clip system.
Resumo:
Complete and partial loss of maxillary bone may jeopardize oral physiology and generate complications as oral-sinus-nasal communication. Palatal obturator prostheses are a treatment alternative for rehabilitation of these patients. The aim of this study was to assess stress distribution, through photoelasticity, on palatal obturator prostheses associated with different attachment systems (o'ring, bar clip, and o'ring/bar clip) of implants and submitted to relining. Two photoelastic models were fabricated according to an experimental maxillary model with oral-sinus-nasal communication. One model did not present implants, whereas the other included 2 implants with 13.0 mm in length in the left ridge. Four colorless maxillary obturator prostheses were fabricated and relined with soft silicone. One of these prostheses presented no attachment system, whereas the remaining prostheses included attachment systems adapted to the implants. The assembly (model/attachment system/prosthesis) was positioned in a circular polariscope during loading with 100 N at 10 mm/s. The results were based on observation during the experiment and photographic records of stress on the photoelastic model. The bar clip system exhibited the highest stress concentration followed by o'ring/bar clip and o'ring systems. The attachment systems presented different stress distribution with greater concentration surrounding the implants and homogenous stress distribution on the photoelastic model without implants. The highest concentration of fringes occurred, in ascending order, with o'ring, o'ring/bar clip, and bar clip systems.
Resumo:
Objectives: The present study used strain gauge analysis to perform an in vitro evaluation of the effect of axial loading on 3 elements of implant-supported partial fixed prostheses, varying the type of prosthetic cylinder and the loading points. Material and methods: Three internal hexagon implants were linearly embedded in a polyurethane block. Microunit abutments were connected to the implants applying a torque of 20 Ncm, and prefabricated Co-Cr cylinders and plastic prosthetic cylinders were screwed onto the abutments, which received standard patterns cast in Co-Cr alloy (n=5). Four strain gauges (SG) were bonded onto the surface of the block tangentially to the implants, SG 01 mesially to implant 1, SG 02 and SG 03 mesially and distally to implant 2, respectively, and SG 04 distally to implant 3. Each metallic structure was screwed onto the abutments with a 10 Ncm torque and an axial load of 30 kg was applied at five predetermined points (A, B, C, D, E). The data obtained from the strain gauge analyses were analyzed statistically by RM ANOVA and Tukey's test, with a level of significance of p<0.05. Results: There was a significant difference for the loading point (p=0.0001), with point B generating the smallest microdeformation (239.49 mu epsilon) and point D the highest (442.77 mu epsilon). No significant difference was found for the cylinder type (p=0.748). Conclusions: It was concluded that the type of cylinder did not affect in the magnitude of microdeformation, but the axial loading location influenced this magnitude.