908 resultados para Information Search


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to examine post-graduate health promotion students’ self-perceptions of information literacy skills prior to, and after completing PILOT, an online information literacy tutorial. Design/methodology/approach – Post graduate students at Queensland University of Technology enrolled in PUP038 New Developments in Health Promotion completed a pre- and post- self-assessment questionnaire. From 2008-2011 students were required to rate their academic writing and research skills before and after completing the PILOT online information literacy tutorial. Quantitative trends and qualitative themes were analysed to establish students’ self-assessment and the effectiveness of the PILOT tutorial. Findings – The results from four years of post-graduate students’ self-assessment questionnaires provide evidence of perceived improvements in information literacy skills after completing PILOT. Some students continued to have trouble with locating quality information and analysis as well as issues surrounding referencing and plagiarism. Feedback was generally positive and students’ responses indicated they found the tutorial highly beneficial in improving their research skills. Originality/value - This paper is original because it describes post-graduate health promotion students’ self-assessment of information literacy skills over a period of four years. The literature is limited in the health promotion domain and self-assessment of post-graduate students’ information literacy skills. Keywords – Self-assessment, Post-graduate, Information literacy, Library instruction, Higher education, Health promotion, Evidence-based practice Paper Type - Research paper

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Success of query reformulation and relevant information retrieval depends on many factors, such as users’ prior knowledge, age, gender, and cognitive styles. One of the important factors that affect a user’s query reformulation behaviour is that of the nature of the search tasks. Limited studies have examined the impact of the search task types on query reformulation behaviour while performing Web searches. This paper examines how the nature of the search tasks affects users’ query reformulation behaviour during information searching. The paper reports empirical results from a user study in which 50 participants performed a set of three Web search tasks – exploratory, factorial and abstract. Users’ interactions with search engines were logged by using a monitoring program. 872 unique search queries were classified into five query types – New, Add, Remove, Replace and Repeat. Users submitted fewer queries for the factual task, which accounted for 26%. They completed a higher number of queries (40% of the total queries) while carrying out the exploratory task. A one-way MANOVA test indicated a significant effect of search task types on users’ query reformulation behaviour. In particular, the search task types influenced the manner in which users reformulated the New and Repeat queries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Search technologies are critical to enable clinical sta to rapidly and e ectively access patient information contained in free-text medical records. Medical search is challenging as terms in the query are often general but those in rel- evant documents are very speci c, leading to granularity mismatch. In this paper we propose to tackle granularity mismatch by exploiting subsumption relationships de ned in formal medical domain knowledge resources. In symbolic reasoning, a subsumption (or `is-a') relationship is a parent-child rela- tionship where one concept is a subset of another concept. Subsumed concepts are included in the retrieval function. In addition, we investigate a number of initial methods for combining weights of query concepts and those of subsumed concepts. Subsumption relationships were found to provide strong indication of relevant information; their inclusion in retrieval functions yields performance improvements. This result motivates the development of formal models of rela- tionships between medical concepts for retrieval purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cross-sections of the Social Web and the Semantic Web has put folksonomy in the spot light for its potential in overcoming knowledge acquisition bottleneck and providing insight for "wisdom of the crowds". Folksonomy which comes as the results of collaborative tagging activities has provided insight into user's understanding about Web resources which might be useful for searching and organizing purposes. However, collaborative tagging vocabulary poses some challenges since tags are freely chosen by users and may exhibit synonymy and polysemy problem. In order to overcome these challenges and boost the potential of folksonomy as emergence semantics we propose to consolidate the diverse vocabulary into a consolidated entities and concepts. We propose to extract a tag ontology by ontology learning process to represent the semantics of a tagging community. This paper presents a novel approach to learn the ontology based on the widely used lexical database WordNet. We present personalization strategies to disambiguate the semantics of tags by combining the opinion of WordNet lexicographers and users’ tagging behavior together. We provide empirical evaluations by using the semantic information contained in the ontology in a tag recommendation experiment. The results show that by using the semantic relationships on the ontology the accuracy of the tag recommender has been improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays people heavily rely on the Internet for information and knowledge. Wikipedia is an online multilingual encyclopaedia that contains a very large number of detailed articles covering most written languages. It is often considered to be a treasury of human knowledge. It includes extensive hypertext links between documents of the same language for easy navigation. However, the pages in different languages are rarely cross-linked except for direct equivalent pages on the same subject in different languages. This could pose serious difficulties to users seeking information or knowledge from different lingual sources, or where there is no equivalent page in one language or another. In this thesis, a new information retrieval task—cross-lingual link discovery (CLLD) is proposed to tackle the problem of the lack of cross-lingual anchored links in a knowledge base such as Wikipedia. In contrast to traditional information retrieval tasks, cross language link discovery algorithms actively recommend a set of meaningful anchors in a source document and establish links to documents in an alternative language. In other words, cross-lingual link discovery is a way of automatically finding hypertext links between documents in different languages, which is particularly helpful for knowledge discovery in different language domains. This study is specifically focused on Chinese / English link discovery (C/ELD). Chinese / English link discovery is a special case of cross-lingual link discovery task. It involves tasks including natural language processing (NLP), cross-lingual information retrieval (CLIR) and cross-lingual link discovery. To justify the effectiveness of CLLD, a standard evaluation framework is also proposed. The evaluation framework includes topics, document collections, a gold standard dataset, evaluation metrics, and toolkits for run pooling, link assessment and system evaluation. With the evaluation framework, performance of CLLD approaches and systems can be quantified. This thesis contributes to the research on natural language processing and cross-lingual information retrieval in CLLD: 1) a new simple, but effective Chinese segmentation method, n-gram mutual information, is presented for determining the boundaries of Chinese text; 2) a voting mechanism of name entity translation is demonstrated for achieving a high precision of English / Chinese machine translation; 3) a link mining approach that mines the existing link structure for anchor probabilities achieves encouraging results in suggesting cross-lingual Chinese / English links in Wikipedia. This approach was examined in the experiments for better, automatic generation of cross-lingual links that were carried out as part of the study. The overall major contribution of this thesis is the provision of a standard evaluation framework for cross-lingual link discovery research. It is important in CLLD evaluation to have this framework which helps in benchmarking the performance of various CLLD systems and in identifying good CLLD realisation approaches. The evaluation methods and the evaluation framework described in this thesis have been utilised to quantify the system performance in the NTCIR-9 Crosslink task which is the first information retrieval track of this kind.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the explosive growth of resources available through the Internet, information mismatching and overload have become a severe concern to users. Web users are commonly overwhelmed by huge volume of information and are faced with the challenge of finding the most relevant and reliable information in a timely manner. Personalised information gathering and recommender systems represent state-of-the-art tools for efficient selection of the most relevant and reliable information resources, and the interest in such systems has increased dramatically over the last few years. However, web personalization has not yet been well-exploited; difficulties arise while selecting resources through recommender systems from a technological and social perspective. Aiming to promote high quality research in order to overcome these challenges, this paper provides a comprehensive survey on the recent work and achievements in the areas of personalised web information gathering and recommender systems. The report covers concept-based techniques exploited in personalised information gathering and recommender systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, recommender systems (RS) have been widely applied in many commercial e-commerce sites to help users deal with the information overload problem. Recommender systems provide personalized recommendations to users and thus help them in making good decisions about which product to buy from the vast number of product choices available to them. Many of the current recommender systems are developed for simple and frequently purchased products like books and videos, by using collaborative-filtering and content-based recommender system approaches. These approaches are not suitable for recommending luxurious and infrequently purchased products as they rely on a large amount of ratings data that is not usually available for such products. This research aims to explore novel approaches for recommending infrequently purchased products by exploiting user generated content such as user reviews and product click streams data. From reviews on products given by the previous users, association rules between product attributes are extracted using an association rule mining technique. Furthermore, from product click streams data, user profiles are generated using the proposed user profiling approach. Two recommendation approaches are proposed based on the knowledge extracted from these resources. The first approach is developed by formulating a new query from the initial query given by the target user, by expanding the query with the suitable association rules. In the second approach, a collaborative-filtering recommender system and search-based approaches are integrated within a hybrid system. In this hybrid system, user profiles are used to find the target user’s neighbour and the subsequent products viewed by them are then used to search for other relevant products. Experiments have been conducted on a real world dataset collected from one of the online car sale companies in Australia to evaluate the effectiveness of the proposed recommendation approaches. The experiment results show that user profiles generated from user click stream data and association rules generated from user reviews can improve recommendation accuracy. In addition, the experiment results also prove that the proposed query expansion and the hybrid collaborative filtering and search-based approaches perform better than the baseline approaches. Integrating the collaborative-filtering and search-based approaches has been challenging as this strategy has not been widely explored so far especially for recommending infrequently purchased products. Therefore, this research will provide a theoretical contribution to the recommender system field as a new technique of combining collaborative-filtering and search-based approaches will be developed. This research also contributes to a development of a new query expansion technique for infrequently purchased products recommendation. This research will also provide a practical contribution to the development of a prototype system for recommending cars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Health Informatics is an intersection of information technology, several disciplines of medicine and health care. It sits at the common frontiers of health care services including patient centric, processes driven and procedural centric care. From the information technology perspective it can be viewed as computer application in medical and/or health processes for delivering better health care solutions. In spite of the exaggerated hype, this field is having a major impact in health care solutions, in particular health care deliveries, decision making, medical devices and allied health care industries. It also affords enormous research opportunities for new methodological development. Despite the obvious connections between Medical Informatics, Nursing Informatics and Health Informatics, most of the methodologies and approaches used in Health Informatics have so far originated from health system management, care aspects and medical diagnostic. This paper explores reasoning for domain knowledge analysis that would establish Health Informatics as a domain and recognised as an intellectual discipline in its own right.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is a work in progress that examines current consumer engagement with eHealth information through Smartphones or tablets. We focus on three activity types: seeking, posting and ‘other’ engagement activity and compare two age groups, 25-40s and over 40-55s. Findings show that around 30% of the younger age group is engaging with Government and other Health providers’ websites, receiving eHealth emails, and reading other people’s comments about health related issues in online discussion groups/websites/blog. Approximately 20% engage with Government and other Health providers’ social media and watch or listen to audio or video podcasts. For the older age group, their most active engagement with eHealth information is in the seeking category through Government or other health websites (approximately 15%), and less than 10% for social media sites. Their posting activity is less than 5%. Other activities show that less than 15% of the older age group engages through receiving emails and reading blogs, less than 10% watch or listen to podcasts, and their online consulting activity is less than 7%. We note that scores are low for both groups in terms of engaging with eHealth information through Twitter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, recommender systems (RS) have been widely applied in many commercial e-commerce sites to help users deal with the information overload problem. Recommender systems provide personalized recommendations to users and, thus, help in making good decisions about which product to buy from the vast amount of product choices. Many of the current recommender systems are developed for simple and frequently purchased products like books and videos, by using collaborative-filtering and content-based approaches. These approaches are not directly applicable for recommending infrequently purchased products such as cars and houses as it is difficult to collect a large number of ratings data from users for such products. Many of the ecommerce sites for infrequently purchased products are still using basic search-based techniques whereby the products that match with the attributes given in the target user’s query are retrieved and recommended. However, search-based recommenders cannot provide personalized recommendations. For different users, the recommendations will be the same if they provide the same query regardless of any difference in their interest. In this article, a simple user profiling approach is proposed to generate user’s preferences to product attributes (i.e., user profiles) based on user product click stream data. The user profiles can be used to find similarminded users (i.e., neighbours) accurately. Two recommendation approaches are proposed, namely Round- Robin fusion algorithm (CFRRobin) and Collaborative Filtering-based Aggregated Query algorithm (CFAgQuery), to generate personalized recommendations based on the user profiles. Instead of using the target user’s query to search for products as normal search based systems do, the CFRRobin technique uses the attributes of the products in which the target user’s neighbours have shown interest as queries to retrieve relevant products, and then recommends to the target user a list of products by merging and ranking the returned products using the Round Robin method. The CFAgQuery technique uses the attributes of the products that the user’s neighbours have shown interest in to derive an aggregated query, which is then used to retrieve products to recommend to the target user. Experiments conducted on a real e-commerce dataset show that both the proposed techniques CFRRobin and CFAgQuery perform better than the standard Collaborative Filtering and the Basic Search approaches, which are widely applied by the current e-commerce applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Entity-oriented retrieval aims to return a list of relevant entities rather than documents to provide exact answers for user queries. The nature of entity-oriented retrieval requires identifying the semantic intent of user queries, i.e., understanding the semantic role of query terms and determining the semantic categories which indicate the class of target entities. Existing methods are not able to exploit the semantic intent by capturing the semantic relationship between terms in a query and in a document that contains entity related information. To improve the understanding of the semantic intent of user queries, we propose concept-based retrieval method that not only automatically identifies the semantic intent of user queries, i.e., Intent Type and Intent Modifier but introduces concepts represented by Wikipedia articles to user queries. We evaluate our proposed method on entity profile documents annotated by concepts from Wikipedia category and list structure. Empirical analysis reveals that the proposed method outperforms several state-of-the-art approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fear of imminent information overload predates the World Wide Web by decades. Yet, that fear has never abated. Worse, as the World Wide Web today takes the lion’s share of the information we deal with, both in amount and in time spent gathering it, the situation has only become more precarious. This chapter analyses new issues in information overload that have emerged with the advent of the Web, which emphasizes written communication, defined in this context as the exchange of ideas expressed informally, often casually, as in verbal language. The chapter focuses on three ways to mitigate these issues. First, it helps us, the users, to be more specific in what we ask for. Second, it helps us amend our request when we don't get what we think we asked for. And third, since only we, the human users, can judge whether the information received is what we want, it makes retrieval techniques more effective by basing them on how humans structure information. This chapter reports on extensive experiments we conducted in all three areas. First, to let users be more specific in describing an information need, they were allowed to express themselves in an unrestricted conversational style. This way, they could convey their information need as if they were talking to a fellow human instead of using the two or three words typically supplied to a search engine. Second, users were provided with effective ways to zoom in on the desired information once potentially relevant information became available. Third, a variety of experiments focused on the search engine itself as the mediator between request and delivery of information. All examples that are explained in detail have actually been implemented. The results of our experiments demonstrate how a human-centered approach can reduce information overload in an area that grows in importance with each day that passes. By actually having built these applications, I present an operational, not just aspirational approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expert searchers engage with information as information brokers, researchers, reference librarians, information architects, faculty who teach advanced search, and in a variety of other information-intensive professions. Their experiences are characterized by a profound understanding of information concepts and skills and they have an agile ability to apply this knowledge to interacting with and having an impact on the information environment. This study explored the learning experiences of searchers to understand the acquisition of search expertise. The research question was: What can be learned about becoming an expert searcher from the learning experiences of proficient novice searchers and highly experienced searchers? The key objectives were: (1) to explore the existence of threshold concepts in search expertise; (2) to improve our understanding of how search expertise is acquired and how novice searchers, intent on becoming experts, can learn to search in more expertlike ways. The participant sample drew from two population groups: (1) highly experienced searchers with a minimum of 20 years of relevant professional experience, including LIS faculty who teach advanced search, information brokers, and search engine developers (11 subjects); and (2) MLIS students who had completed coursework in information retrieval and online searching and demonstrated exceptional ability (9 subjects). Using these two groups allowed a nuanced understanding of the experience of learning to search in expertlike ways, with data from those who search at a very high level as well as those who may be actively developing expertise. The study used semi-structured interviews, search tasks with think-aloud narratives, and talk-after protocols. Searches were screen-captured with simultaneous audio-recording of the think-aloud narrative. Data were coded and analyzed using NVivo9 and manually. Grounded theory allowed categories and themes to emerge from the data. Categories represented conceptual knowledge and attributes of expert searchers. In accord with grounded theory method, once theoretical saturation was achieved, during the final stage of analysis the data were viewed through lenses of existing theoretical frameworks. For this study, threshold concept theory (Meyer & Land, 2003) was used to explore which concepts might be threshold concepts. Threshold concepts have been used to explore transformative learning portals in subjects ranging from economics to mathematics. A threshold concept has five defining characteristics: transformative (causing a shift in perception), irreversible (unlikely to be forgotten), integrative (unifying separate concepts), troublesome (initially counter-intuitive), and may be bounded. Themes that emerged provided evidence of four concepts which had the characteristics of threshold concepts. These were: information environment: the total information environment is perceived and understood; information structures: content, index structures, and retrieval algorithms are understood; information vocabularies: fluency in search behaviors related to language, including natural language, controlled vocabulary, and finesse using proximity, truncation, and other language-based tools. The fourth threshold concept was concept fusion, the integration of the other three threshold concepts and further defined by three properties: visioning (anticipating next moves), being light on one's 'search feet' (dancing property), and profound ontological shift (identity as searcher). In addition to the threshold concepts, findings were reported that were not concept-based, including praxes and traits of expert searchers. A model of search expertise is proposed with the four threshold concepts at its core that also integrates the traits and praxes elicited from the study, attributes which are likewise long recognized in LIS research as present in professional searchers. The research provides a deeper understanding of the transformative learning experiences involved in the acquisition of search expertise. It adds to our understanding of search expertise in the context of today's information environment and has implications for teaching advanced search, for research more broadly within library and information science, and for methodologies used to explore threshold concepts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the rapid growth of information on the Web, the study of information searching has let to an increased interest. Information behaviour (IB) researchers and information systems (IS) developers are continuously exploring user - Web search interactions to understand and to help users to provide assistance with their information searching. In attempting to develop models of IB, several studies have identified various factors that govern user's information searching and information retrieval (IR), such as age, gender, prior knowledge and task complexity. However, how users' contextual factors, such as cognitive styles, affect Web search interactions has not been clearly explained by the current models of Web Searching and IR. This study explores the influence of users' cognitive styles on their Web search behaviour. The main goal of the study is to enhance Web search models with a better understanding of how these cognitive styles affect Web searching. Modelling Web search behaviour with a greater understanding of user's cognitive styles can help information science researchers and IS designers to bridge the semantic gap between the user and the IS. To achieve the aims of the study, a user study with 50 participants was conducted. The study adopted a mixed method approach incorporating several data collection strategies to gather a range of qualitative and quantitative data. The study utilised pre-search and post-search questionnaires to collect the participants' demographic information and their level of satisfaction about the search interactions. Riding's (1991) Cognitive Style Analysis (CSA) test was used to assess the participants' cognitive styles. Participants completed three predesigned search tasks and the whole user - web search interactions, including thinkaloud, were captured using a monitoring program. Data analysis involved several qualitative and quantitative techniques: the quantitative data gave raise to detailed findings about users' Web searching and cognitive styles, the qualitative data enriched the findings with illustrative examples. The study results provide valuable insights into Web searching behaviour among different cognitive style users. The findings of the study extend our understanding of Web search behaviour and how users search information on the Web. Three key study findings emerged: • Users' Web search behaviour was demonstrated through information searching strategies, Web navigation styles, query reformulation behaviour and information processing approaches while performing Web searches. The manner in which these Web search patterns were demonstrated varied among the users with different cognitive style groups. • Users' cognitive styles influenced their information searching strategies, query reformulation behaviour, Web navigational styles and information processing approaches. Users with particular cognitive styles followed certain Web search patterns. • Fundamental relationships were evident between users' cognitive styles and their Web search behaviours; and these relationships can be illustrated through modelling Web search behaviour. Two models that depict the associations between Web search interactions, user characteristics and users' cognitive styles were developed. These models provide a greater understanding of Web search behaviour from the user perspective, particularly how users' cognitive styles influence their Web search behaviour. The significance of this research is twofold: it will provide insights for information science researchers, information system designers, academics, educators, trainers and librarians who want to better understand how users with different cognitive styles perform information searching on the Web; at the same time, it will provide assistance and support to the users. The major outcomes of this study are 1) a comprehensive analysis of how users search the Web; 2) extensive discussion on the implications of the models developed in this study for future work; and 3) a theoretical framework to bridge high-level search models and cognitive models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the pure framing effect of price discounts, focusing on its impact on consumer search behavior. In a simple two-shop search experiment, we compare search behavior in base treatments (where both shops post net prices without discounts) to discount treatments (where either the first shop or the second shop posts gross prices with separate discount offers, keeping the net prices constant). Although the objective search problems are identical across treatments, subjects search less in discount frames, irrespective where the discount is offered. There is evidence showing that subjects only base their decisions on salient characteristics of the situation rather than on the objective price information.