905 resultados para Influenza Vaccination
Resumo:
Background: Flu vaccine composition is reformulated on a yearly basis. As such, the vaccine effectiveness (VE) from previous seasons cannot be considered for subsequent years, and it is necessary to monitor the VE for each season. This study (MonitorEVA- monitoring vaccine effectiveness) intends to evaluate the feasibility of using the national influenza surveillance system (NISS) for monitoring the influenza VE. Material and methods: Data was collected within NISS during 2004 to 2014 seasons. We used a case-control design where laboratory confirmed incident influenza like illness (ILI) patients (cases) were compared to controls (ILI influenza negative). Eligible individuals consisted on all aged individuals that consult a general practitioner or emergency room with ILI symptoms with a swab collected within seven days of symptoms onset. VE was estimated as 1- odds ratio of being vaccinated in cases versus controls adjusted for age and month of onset by logistic regression. Sensitivity analyses were conducted to test possible effect of assumptions on vaccination status, ILI definition and timing of swabs (<3 days after onset). Results: During the 2004-2014 period, a total of 5302 ILI patients were collected but 798 ILI were excluded for not complying with inclusion criteria. After data restriction the sample size in both groups was higher than 148 individuals/ season; minimum sample size needed to detect a VE of at least 50% considering a level of significance of 5% and 80% power. Crude VE point estimates were under 45% in 2004/05, 2005/06, 2011/12 and 2013/14 season; between 50%-70% in 2006/07, 2008/09 and 2010/11 seasons, and above 70% in 2007/08 and 2012/13 season. From season 2006/07 to 2013/14, all crude VE estimates were statistically significant. After adjustment for age group and month of onset, the VE point estimates decreased and only 2008/09, 2012/13 and 2013/14 seasons were significant. Discussion and Conclusions: MonitorEVA was able to provide VE estimates for all seasons, including the pandemic, indicating if the VE was higher than 70% and less than 50%. When comparing with other observational studies, MonitorEVA estimates were comparable but less precise and VE estimates were in accordance with the antigenic match of the circulating virus/ vaccine strains. Given the sensitivity results, we propose a MonitorEVA based on: a) Vaccination status defined independently of number of days between vaccination and symptoms onset; b) use of all ILI data independent of the definition; c) stratification of VE according to time between onset and swab (< 3 and ≥3 days).
Resumo:
The Iowa Influenza Surveillance Network (IISN) was established in 2004, though surveillance has been conducted at the Iowa Department of Public Health. Schools and long-term care facilities report data weekly into a Web-based reporting system. Schools report the number of students absent due to illness and the total enrolled. Long-term care facilities report cases of influenza and vaccination status of each case. Both passively report outbreaks of illness, including influenza, to IDPH.
Resumo:
The Iowa Influenza Surveillance Network (IISN) was established in 2004, though surveillance has been conducted at the Iowa Department of Public Health. Schools and long-term care facilities report data weekly into a Web-based reporting system. Schools report the number of students absent due to illness and the total enrolled. Long-term care facilities report cases of influenza and vaccination status of each case. Both passively report outbreaks of illness, including influenza, to IDPH.
Resumo:
The Iowa Influenza Surveillance Network (IISN) was established in 2004, though surveillance has been conducted at the Iowa Department of Public Health. Schools and long-term care facilities report data weekly into a Web-based reporting system. Schools report the number of students absent due to illness and the total enrolled. Long-term care facilities report cases of influenza and vaccination status of each case. Both passively report outbreaks of illness, including influenza, to IDPH.
Resumo:
The Iowa Influenza Surveillance Network (IISN) was established in 2004, though surveillance has been conducted at the Iowa Department of Public Health. Schools and long-term care facilities report data weekly into a Web-based reporting system. Schools report the number of students absent due to illness and the total enrolled. Long-term care facilities report cases of influenza and vaccination status of each case. Both passively report outbreaks of illness, including influenza, to IDPH.
Resumo:
The Iowa Influenza Surveillance Network (IISN) was established in 2004, though surveillance has been conducted at the Iowa Department of Public Health. Schools and long-term care facilities report data weekly into a Web-based reporting system. Schools report the number of students absent due to illness and the total enrolled. Long-term care facilities report cases of influenza and vaccination status of each case. Both passively report outbreaks of illness, including influenza, to IDPH.
Resumo:
The Iowa Influenza Surveillance Network (IISN) was established in 2004, though surveillance has been conducted at the Iowa Department of Public Health. Schools and long-term care facilities report data weekly into a Web-based reporting system. Schools report the number of students absent due to illness and the total enrolled. Long-term care facilities report cases of influenza and vaccination status of each case. Both passively report outbreaks of illness, including influenza, to IDPH.
Resumo:
The Iowa Influenza Surveillance Network (IISN) was established in 2004, though surveillance has been conducted at the Iowa Department of Public Health. Schools and long-term care facilities report data weekly into a Web-based reporting system. Schools report the number of students absent due to illness and the total enrolled. Long-term care facilities report cases of influenza and vaccination status of each case. Both passively report outbreaks of illness, including influenza, to IDPH.
Resumo:
The Iowa Influenza Surveillance Network (IISN) was established in 2004, though surveillance has been conducted at the Iowa Department of Public Health. Schools and long-term care facilities report data weekly into a Web-based reporting system. Schools report the number of students absent due to illness and the total enrolled. Long-term care facilities report cases of influenza and vaccination status of each case. Both passively report outbreaks of illness, including influenza, to IDPH.
Resumo:
The Iowa Influenza Surveillance Network (IISN) was established in 2004, though surveillance has been conducted at the Iowa Department of Public Health. Schools and long-term care facilities report data weekly into a Web-based reporting system. Schools report the number of students absent due to illness and the total enrolled. Long-term care facilities report cases of influenza and vaccination status of each case. Both passively report outbreaks of illness, including influenza, to IDPH.
Resumo:
This report was prepared as part of the Project “Monitoring Influenza vaccine effectiveness during influenza seasons and pandemics in the European Union” and describes the results obtained in Portugal under the Protocol Agreement celebrated between EpiConcept SARL, Paris and National Health Institute Dr. Ricardo Jorge, Lisbon. Data and activities related to the individuals 65 years and more were funded by European Union’s Horizon 2020 research and innovation programme under grant agreement no 634446.
Resumo:
This review provides an update on current evidence surrounding epidemiology, treatment and prevention of lower respiratory tract infection, with special reference to pneumonia and influenza, in care home residents. The care home sector is growing and provides a unique ecological niche for infections, housing frail older people with multiple comorbidities and frequent contact with healthcare services. There are therefore considerations in the epidemiology and management of these conditions which are specific to care homes. Opportunities for prevention, in the form of vaccination strategies and improving oral hygiene, may reduce the burden of these diseases in the future. Work is needed to research these infections specifically in the care home setting and this article highlights current gaps in our knowledge.
Resumo:
Influenza is a major cause of morbidity and mortality; current estimates by the World Health Organization (WHO) are 3 to 5 million cases and 250,000 to 500,000 deaths worldwide every year. Most deaths associated with it occur among people age 65 or older, as well as among persons suffering a chronic debilitating disease regardless of age. The recent 2009 pandemic served to foster interest in this disease. An inactivated virus vaccine has been available since the late 1940´s but it only began to be used extensively when the influenza virus antigenic variability was taken into account. Aside from such variability, influenza viruses are capable of infecting a wide variety of vertebrates, including many avian species, both wild and domestic, thus it is essential to monitor the antigenic characteristics of influenza virus strains currently circulating, and so the vaccine formula has to be evaluated and modiied accordingly every year
Resumo:
Objectives: To determine the frequency of vaccination in older adults within the city of Bogotá and to estimate the association with sociodemographic and health factors. Methods: This is a secondary data analysis from the SABE-Bogotá Study, a cross-sectional population-based study that included a total of 2,000 persons aged 60 years. Weighted percentages for self-reported vaccination [influenza, pneumococcal, tetanus] were determined. The association between vaccination and covariates was evaluate by logistic regression models. Results: A total of 73.0% of respondents received influenza, 57.8% pneumococcal and 47.6% tetanus vaccine. Factors independently associated with vaccination included: 1- age (65-74 years had higher odds of receiving vaccinations, compared to 60-64 years; 2- socioeconomic status (SES) (higher SES had lower odds of having influenza and pneumococcal vaccines, compared to those with lower SES); 3- health insurance (those with contributive or subsidized health insurance had higher odds (between 3 and 5 times higher) of having vaccinations, compared to those with no insurance); 4- older adults with better functional status (greater Lawton scores) had increased odds for all vaccinations; 5- older adults with higher comorbidity had increased odds for influenza and pneumococcal vaccinations. Conclusion: Vaccination campaigns should be strengthened to increase vaccination coverage, especially in the group more reticent to vaccination or vulnerable to reach it such as the disable elder.
Resumo:
The perspectives for a Chagas Disease vaccine 30 years ago and today are compared. Antigens and adjuvants have improved, but logistic problems remain the same. Sterilizing vaccines have not been produced and animal models for chronic Chagas have not been developed. Vector control has been successful and Chagas incidence has come to a halt. We do not have a population candidate to vaccination now in Brazil. And if we had, we would not know how to evaluate the success of vaccination in a short time period. A vaccine may not seem important at the moment. However, scientific reasons and incertitudes about the future recommend that a search for a vaccine be continued.