993 resultados para Inductively coupled plasma (ICP)
Resumo:
Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 μg g−1. Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography–ultraviolet photo-oxidation–hydride generation atomic–fluorescence spectrometry (HPLC–(UV)–HG–AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 μg g−1, whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 μg g−1). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) (<0.9 μg g−1) and generally high arsenate (As(V)) concentrations (up to 77 μg g−1) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.
Resumo:
Bodies of Ding kiln white porcelains and their imitations from Guantai and Jiexiu kilns of the Chinese Song dynasty (960-1279 AD) were analysed for 40 trace elements by inductively coupled plasma mass spectrometry (ICP-MS). Numerous trace element compositions and ratios allow these visually similar products to be distinguished, and a Ding-style shard of uncertain origin is identified as a likely genuine Ding product. In Jiexiu kiln, Ding-style products have trace element features distinctive from blackwares of an inferior quality intended for the lower end market. Based on geochemical behaviour of these trace elements, we propose that geochemically distinctive raw materials were used for Ding-style products of a higher quality, which possibly also underwent purification by levigation prior to use. Capable of analysing over 40 elements with a typical long term precision of < 2%, this high precision ICP-MS method proves to be very powerful for grouping and characterising archaeological ceramics. Combined with geochemical interpretation, it can provide insights into the raw materials and techniques used by ancient potters. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A major and growing problems faced by modern society is the high production of waste and related effects they produce, such as environmental degradation and pollution of various ecosystems, with direct effects on quality of life. The thermal treatment technologies have been widely used in the treatment of these wastes and thermal plasma is gaining importance in processing blanketing. This work is focused on developing an optimized system of supervision and control applied to a processing plant and petrochemical waste effluents using thermal plasma. The system is basically composed of a inductive plasma torch reactors washing system / exhaust gases and RF power used to generate plasma. The process of supervision and control of the plant is of paramount importance in the development of the ultimate goal. For this reason, various subsidies were created in the search for greater efficiency in the process, generating events, graphics / distribution and storage of data for each subsystem of the plant, process execution, control and 3D visualization of each subsystem of the plant between others. A communication platform between the virtual 3D plant architecture and a real control structure (hardware) was created. The goal is to use the concepts of mixed reality and develop strategies for different types of controls that allow manipulating 3D plant without restrictions and schedules, optimize the actual process. Studies have shown that one of the best ways to implement the control of generation inductively coupled plasma techniques is to use intelligent control, both for their efficiency in the results is low for its implementation, without requiring a specific model. The control strategy using Fuzzy Logic (Fuzzy-PI) was developed and implemented, and the results showed satisfactory condition on response time and viability
Resumo:
We constructed a high-resolution Mg/Ca record on the planktonic foraminifer Globigerinoides sacculifer in order to explore the change in sea surface temperature (SST) due to the shoaling of the Isthmus of Panama as well as the impact of secondary factors like diagenesis and large salinity fluctuations. The study covers the latest Miocene and the early Pliocene (5.6-3.9 Ma) and was combined with d18O to isolate changes in sea surface salinity (SSS). Before 4.5 Ma, SSTMg/Ca and SSS show moderate fluctuations, indicating a free exchange of surface ocean water masses between the Pacific and the Atlantic. The increase in d18O after 4.5 Ma represents increasing salinities in the Caribbean due to the progressive closure of the Panamanian Gateway. The increase in Mg/Ca toward values of maximum 7 mmol/mol suggests that secondary influences have played a significant role. Evidence of crystalline overgrowths on the foraminiferal tests in correlation with aragonite, Sr/Ca, and productivity cyclicities indicates a diagenetic overprint on the foraminiferal tests. Laser ablation inductively coupled plasma-mass spectrometry analyses, however, do not show significantly increased Mg/Ca ratios in the crystalline overgrowths, and neither do calculations based on pore water data conclusively result in significantly elevated Mg/Ca ratios in the crystalline overgrowths. Alternatively, the elevated Mg/Ca ratios might have been caused by salinity as the d18O record of Site 1000 has been interpreted to represent large fluctuations in SSS, and cultivating experiments have shown an increase in Mg/Ca with increasing salinity. We conclude that the Mg/Ca record <4.5 Ma can only reliably be considered for paleoceanographical purposes when the minimum values, not showing any evidence of secondary influences, are used, resulting in a warming of central Caribbean surface water masses after 4.5 Ma of ~2°C.
Resumo:
Natural radionuclides and man-made 137Cs were analyzed in five short sediment cores taken in northern part of the Gulf of Eilat (Gulf of Aqaba) in order to provide information on sedimentation and mixing rates and sediment sources. The maximum estimates of sedimentation rates based on excess 210Pb were found to vary between 0.105 ± 0.020 and 0.35 ± 0.23 cm · year**-1. Even the lowest estimates are significantly higher than those expected from dust deposition, suggesting other sources and processes being responsible for most of the allochthonous material accumulation, including periodical floods following heavy rain events, internal erosion or triggers, like earthquakes. In 137Cs depth profiles no 1963 related nuclear weapon test maxima were found; instead, the activities decrease monotonically, suggesting that a major process leading to radionuclides' depth distribution might be mixing. The mixing rates calculated from 137Cs, excess 210Pb and excess 228Th reach values up to 2.18 ± 0.69 cm**2 · year**-1.
Resumo:
This project describes a methodology optimization that would allow for a more efficient microwave assisted digestion process for petroleum samples. With the possible chance to vary various factors at once to see if any one factor was significant enough in the answers, experimental planning was used. Microwave assisted digestion allows, through the application of potency, an increasing number of collisions between the HNO3 and H2O2 molecules, favoring sample opening for complex matrixes. For this, a 24 factorial experimental planning was used, varying potency, time and the volumes for HNO3 65% and H2O2 30%. To achieve the desired answers, several elements were monitored (C, Cu, Cr, Fe, Ni, Zn and V) through Inductively coupled plasma atomic emission spectroscopy (ICP-OES). With this initial study it was noticed that the HNO3 was not a significant factor for any of the statistical studies for any of the analytes and the other 3 factors and their interactions showed statistical significance. A Box Behnken experimental planning was used taking in consideration 3 factors: H2O2 volume, time (min) and Potency (W), Nitric Acid kept at 4mL for a mass of 0,1g of petroleum. The results were extremely satisfying showing higher efficiency in the digestion process and taking in a responsibility between the answers for each analyte and the carbon monitoring was achieved in the following conditions: 7mL of H2O2, 700 Watts of potency and a reaction time of 7 minutes with 4mL de HNO3 for a mass of 0,1g of petroleum. The optimized digestion process was applied to four different petroleum samples and the analytes determined by ICP-OES
Resumo:
The SLC8A1 gene, which encodes the Na(+)/Ca(2+) exchanger, plays a key role in calcium homeostasis. Our previous gene expression oligoarray data revealed SLC8A1 underexpression in penile carcinoma (PeCa). The aim of this study was to investigate whether the dysregulation of SLC8A1 expression is associated with apoptosis and cell proliferation in PeCa, via modulation of calcium concentration. The underlying mechanisms of SLC8A1 underexpression were also explored, focusing on copy number alteration and microRNA. Transcript levels of SLC8A1 gene and miR-223 were evaluated by quantitative PCR, comparing PeCa samples with normal glans tissues. SLC8A1 copy number was evaluated by microarray-based comparative genomic hybridization (array-CGH). Caspase-3 and Ki-67 immunostaining, as well as calcium distribution by Laser Ablation Imaging Inductively Coupled Plasma Mass Spectrometry [LA(i)-ICP-MS], were investigated in both normal and tumor samples. Confirming our previous data, SLC8A1 underexpression was detected in PeCa samples (P=0.001) and was not associated with gene copy number loss. In contrast, overexpression of miR-223 (P=0.002) was inversely correlated with SLC8A1 (P=0.015, r=-0.426), its putative repressor. In addition, SLC8A1 underexpression was associated with decreased calcium distribution, high Ki-67 and low caspase-3 immunoexpression in PeCa when compared with normal tissues. Down-regulation of the SLC8A1 gene, most likely mediated by its regulator miR-223, can lead to reduced calcium levels in PeCa and, consequently, to suppression of apoptosis and increased tumor cell proliferation. These data suggest that the miR-223-NCX1-calcium-signaling axis may represent a potential therapeutic approach in PeCa.
Resumo:
Several sample preparation strategies were employed for determination and fractionation of barium in Brazil nuts using measurements by graphite furnace atomic absorption spectrometry (GF AAS) and inductively coupled plasma optical emission spectrometry with axial view (ICP OES). This food is widely consumed because of its nutritional value and good taste. The chemical analysis of Brazil nuts is not trivial due to their complex matrix. The fractionation of barium in Brazil nuts was studied owing to the toxicity of this element and the strong correlation between chemical form and absorption. Total concentrations of barium varied from 860 to 2084 mg kg-1. Sequential extractions were performed based on solubility in different media and also according to lipids, proteins and low molecular weight fractions (LMW). The greatest contents of barium were determined in the LMW and in the water insoluble fractions with concentrations in the range 778 to 1606 and 551 to 1520 mg kg-1, respectively. Based on these results it can be inferred that Ba is not absorbed when Brazil nuts are ingested. Considering both the contents of barium and sulfur in different fractions and stoichiometric calculations it was also possible to assume that barium occurs mainly in the BaSO4 form. The presence of this chemical form was also confirmed by thermogravimetric measurements.
Resumo:
Lead poisoning has been reportedly linked to a high risk of learning disabilities, aggression and criminal offenses. To study the association between lead exposure and antisocial/delinquent behavior, a cross-sectional study was conducted with 173 Brazilian youths aged 14\201318 and their parents (n = 93), living in impoverished neighborhoods of Bauru-SP, with high criminality indices. Self-Reported Delinquency (SRD) and Child Behavior Checklist (CBCL) questionnaires were used to evaluate delinquent/antisocial behavior. Body lead burdens were evaluated in surface dental enamel acid microbiopsies. The dental enamel lead levels (DELL) were quantified by graphite furnace atomic absorption spectrometry (GFAAS) and phosphorus content was measured using inductively coupled plasma optical emission spectrometry (ICP-OES). Logistic regression was used to identify associations between DELL and each scale defined by CBCL and SRD scores. Odd ratios adjusted for familial and social covariates, considering a group of youths exposed to high lead levels (\2265 75 percentile), indicated that high DELL is associated with increased risk of exceeding the clinical score for somatic complaints, social problems, rule-breaking behavior and externalizing problems (CI 95 per cent). High DELL was not found to be associated with elevated SRD scores. In conclusion, our data support the hypothesis that high-level lead exposure can trigger antisocial behavior, which calls for public policies to prevent lead poisoning
Resumo:
Cadmium is known to be a toxic agent that accumulates in the living organisms and present high toxicity potential over lifetime. Efforts towards the development of methods for microanalysis of environmental samples, including the determination of this element by graphite furnace atomic absorption spectrometry (GFAAS). inductively coupled plasma optical emission spectrometry (ICP OES), and inductively coupled plasma-mass spectrometry (ICP-MS) techniques, have been increasing. Laser induced breakdown spectroscopy (UBS) is an emerging technique dedicated to microanalysis and there is a lack of information dealing with the determination of cadmium. The aim of this work is to demonstrate the feasibility of LIBS for cadmium detection in soils. The experimental setup was designed using a laser Q-switched (Nd:YAG, 10 Hz, lambda = 1064 nm) and the emission signals were collimated by lenses into an optical fiber Coupled to a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Samples were cryogenically ground and thereafter pelletized before LIBS analysis. Best results were achieved by exploring a test portion (i.e. sampling spots) with larger surface area, which contributes to diminish the uncertainty due to element specific microheterogeneity. Calibration curves for cadmium determination were achieved using certified reference materials. The metrological figures of merit indicate that LIBS can be recommended for screening of cadmium contamination in soils. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The development of cancer is a complex, multistage process during which a normal cell undergoes genetic changes that result in phenotypic alterations and in the acquisition of the ability to invade other sites. Inductively coupled plasma optical emission spectroscopy was used to estimate the contents of Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, P, Pb, and Zn in healthy kidney and renal cell carcinoma (RCC), and significant differences were found for all elements. Along with the progression of the malignant disease, a progressive decrease of Cd and K was observed. In fact, for Cd, the concentration in stage T4 was 263.9 times lower than in stage T1, and for K, the concentration in stage T4 was 1.73 times lower than in stage T1. Progressive accumulation was detected for P, Pb, and Zn in stage T4. For P, the concentration in stage T4 was 11.1 times higher than in stage T1; for Pb, the concentration in stage T4 was 232.7 times higher than in T1; and for Zn, the concentration in T4 was 8.452 times higher than in T1. This study highlights the marked differences in the concentrations of selected trace metals in different malignant tumor stages. These findings indicate that some trace metals may play important roles in the pathogenesis of RCC.
Resumo:
The performance of laser-induced breakdown spectrometry (LIBS) for the determination of Ba, Cd, Cr and Pb in toys has been evaluated by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with intensified charge-coupled device detector. Samples were purchased in different cities of Sao Paulo State market and analyzed directly without sample preparation. Laser-induced breakdown spectrometry experimental conditions (number of pulses, delay time. integration time gate and pulse energy) were optimized by using a Doehlert design. Laser-induced breakdown spectrometry signals correlated reasonably well with inductively coupled plasma optical emission spectrometry (ICP OES) concentrations after microwave-assisted acid digestion of selected samples. Thermal analysis was used for polymer identification and scanning electron microscopy to Visualize differences in crater geometry of different polymers employed for toy fabrication. Results indicate that laser-induced breakdown spectrometry can be proposed as a rapid screening method for investigation of potentially toxic elements in toys. The unique application of laser-induced breakdown spectrometry for identification of contaminants in successive layers of ink and polymer is also demonstrated. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Plasma is an innovative sterilization method characterized by a low toxicity to operators and patients, and also by its operation at temperatures close to room temperatures. The use of different parameters for this method of sterilization and the corresponding results were analyzed in this study. A low-pressure inductive discharge was used to study the plasma sterilization processes. Oxygen and a mixture of oxygen and hydrogen peroxide were used as plasma source gases. The efficacy of the processes using different combinations of parameters such as plasma-generation method, type of gas, pressure, gas flow rate, temperature, power, and exposure time was evaluated. Two phases were developed for the processes, one using pure oxygen and the other a mixture of gases. Bacillus subtilis var. niger ATCC 9372 (Bacillus atrophaeus) spores inoculated on glass coverslips were used as biological indicators to evaluate the efficacy of the processes. All cycles were carried out in triplicate for different sublethal exposure times to calculate the D value by the enumeration method. The pour-plate technique was used to quantify the spores. D values of between 8 and 3 min were obtained. Best results were achieved at high power levels (350 and 40oW) using pure oxygen, showing that plasma sterilization is a promising alternative to other sterilization methods. (c) 2007 Elsevier B.V. All rights reserved.