985 resultados para Induction Learning
Resumo:
Context: Cannabis sativa use can impair verbal learning, provoke acute psychosis, and increase the risk of schizophrenia. It is unclear where C sativa acts in the human brain to modulate verbal learning and to induce psychotic symptoms. Objectives: To investigate the effects of 2 main psychoactive constituents of C sativa, Delta 9-tetrahydrocannabinol (Delta 9-THC) and cannabidiol, on regional brain function during verbal paired associate learning. Design: Subjects were studied on 3 separate occasions using a block design functional magnetic resonance imaging paradigm while performing a verbal paired associate learning task. Each imaging session was preceded by the ingestion of Delta 9-THC (10 mg), cannabidiol (600 mg), or placebo in a double-blind, randomized, placebo-controlled, repeated-measures, within-subject design. Setting: University research center. Participants: Fifteen healthy, native English-speaking, right-handed men of white race/ethnicity who had used C sativa 15 times or less and had minimal exposure to other illicit drugs in their lifetime. Main Outcome Measures: Regional brain activation ( blood oxygen level-dependent response), performance in a verbal learning task, and objective and subjective ratings of psychotic symptoms, anxiety, intoxication, and sedation. Results: Delta 9-Tetrahydrocannabinol increased psychotic symptoms and levels of anxiety, intoxication, and sedation, whereas no significant effect was noted on these parameters following administration of cannabidiol. Performance in the verbal learning task was not significantly modulated by either drug. Administration of Delta 9-THC augmented activation in the parahippocampal gyrus during blocks 2 and 3 such that the normal linear decrement in activation across repeated encoding blocks was no longer evident. Delta 9-Tetrahydrocannabinol also attenuated the normal time-dependent change in ventrostriatal activation during retrieval of word pairs, which was directly correlated with concurrently induced psychotic symptoms. In contrast, administration of cannabidiol had no such effect. Conclusion: The modulation of mediotemporal and ventrostriatal function by Delta 9-THC may underlie the effects of C sativa on verbal learning and psychotic symptoms, respectively.
Resumo:
This paper reports on the outcomes of the first stage of a longitudinal study that focused on the transformational change process being undertaken within the Supply Chain and Operations Area of a major Australian food manufacturing company. Organizational learning is an essential prerequisite for any successful change process and an organization's ability to learn is dependent on the existence of an environment within the organization that nurtures learning and the presence of key enablers that facilitate the learning process. An organization's capacity to learn can be enhanced through its ability to form and sustain collaborative relationships with its chain partners. The results show that an environment that supports organizational learning is being developed through consultative leadership and the empowerment of individuals within a culture that supports innovation and cross-functional teamwork but demands responsibility and accountability. The impact of these changes within the Supply Chain and Operations Area is evident in the significant improvement in the Area's productivity and efficiency levels over the past twelve months. The company's endeavours to engage its major supply chain partners in the learning process have been limited by the turmoil within the company. However the company has involved its supply chain partners in a series of mutually beneficial projects that have improved communication and built trust thereby laying the foundations for more collaborative chain relationships.
Resumo:
Purpose: Eicosapentaenoic acid has been tested in bladder cancer as a synergistic cytotoxic agent in the form of meglumine-eicosapentaenoic acid, although its mechanism of action is poorly understood in this cancer. The current study analyzed the mechanisms by which eicosapentaenoic acid alters T24/83 human bladder cancer metabolism in vitro. Materials and Methods: T24/83 human bladder cancer cells were exposed to eicosapentaenoic acid for 6 to 24 hours in vitro and incorporation profiles were determined. Effects on membrane phospholipid incorporation, energy metabolism, mitochondrial activity, cell proliferation and apoptosis were analyzed Reactive oxygen species and lipid peroxide production were also determined. Results: Eicosapentaenoic acid was readily incorporated into membrane phospholipids with a considerable amount present in mitochondrial cardiolipin. Energy metabolism was significantly altered by eicosapentaenoic acid, accompanied by decreased mitochondrial membrane potential, and increased lipid peroxide and reactive oxygen species generation. Subsequently caspase-3 activation and apoptosis were detected in eicosapentaenoic acid exposed cells, leading to decreased cell numbers. Conclusions: These findings confirm that eicosapentaenoic acid is a potent cytotoxic agent in bladder cancer cells and provide important insight into the mechanisms by which eicosapentaenoic acid causes these changes. The changes in membrane composition that can occur with eicosapentaenoic acid likely contribute to the enhanced drug cytotoxicity reported previously in meglumine-eicosapentaenoic acid/epirubicin/mitomycin studies. Dietary manipulation of the cardiolipin fatty acid composition may provide an additional method for stimulating cell death in bladder cancer. In vivo studies using intravesical and dietary manipulation of fatty acid metabolism in bladder cancer merit further attention.
Resumo:
Background. Defects in apoptosis signaling have been considered to be responsible for treatment failure in many types of cancer, although with controversial results. The objective of the present study was to assess the expression profile of key apoptosis-related genes in terms of clinical and biological variables and of the survival of children with acute lymphoblastic leukemia (ALL). Procedure. The levels of mRNA expression of the apoptosis-related genes CASP3, CASP8, CASP9, FAS, and BCL2 were analyzed by quantitative real-time PCR in consecutive samples from 139 consecutive children with ALL at diagnosis treated by the Brazilian protocol (GBTLI-ALL 99). Gene expression levels and clinical and biological features were compared by the Mann-Whitney test. Event-free survival (EFS) was calculated by Kaplan-Meier plots and log-rank test. Results. A significant correlation was detected between CASP3, CASP8, CASP9, and FAS expression levels (P<0.01) in ALL samples. Higher levels of BCL2 were significantly associated with white blood cell (WBC) count <50,000/mm(3) at diagnosis (P=0.01) and low risk group classification (P=0.008). Lower expression levels of CASP3, CASP8 and FAS gene were associated with a poor response at day 7 according the GBTLI-ALL 99 protocol (P=0.03, P=0.02 and P=0.008, respectively). There was a relationship between FAS gene expression lower than the 75th percentile and lower 5-year EFS (P=0.02). Conclusion. These findings suggest an association between lower expression levels of the pro-apoptotic genes and a poor response to induction therapy at day 7 and prognosis in childhood ALL. Pediatr Blood Cancer 2010;55:100-107. (C) 2010 Wiley-Liss, Inc.
Resumo:
Gap junctional intercellular communication (GJIC) and connexin expression (Cx26 and Cx32) in mouse liver were studied after administration of 4-bis[2-(3,5 dichloropyridyloxy)]benzene (TCPOBOP), a phenobarbital-like enzyme inducer. Female C57BI/6 mice were administered TCPOBOP (5.8 mg/kg BW) and euthanized 0, 24, 48 and 72 hours later. Liver samples were snap frozen, or fixed in formalin, or submitted to GJIC analysis. The proliferating cell nuclear antigen (PCNA) immunohistochemistry and the Western blotting for Cx26 and Cx32 were performed. After 48 and 72 h of drug administration the liver-to-body weight ratio was increased 70% and 117% (p < 0.0001), respectively. There were temporal-dependent alterations in liver histopathology and a significant increase in cell proliferation was noted after 48h and sustained after 72h, though to a lesser extent (p < 0.0001). In addition. TCPOBOP administration induced apoptosis, which appeared to be time-dependent showing statistical significance only after 72h (p < 0.0001). Interestingly, a transient disruption by nearly 50% of GJIC capacity was detected after 48 h of drug ingestion, which recovered after 72 h (p = 0.003). These GJIC changes were due to altered levels of Cx26 and Cx32 in the livers of TCPOBOP-treated mice. We concluded that a single administration of TCPOBOP transiently disrupted the levels of GJIC due to decreased expression of connexins and increased apoptotic cell death in mouse liver. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Two experiments evaluated the effects of the first GnRH injection of the 5-d timed artificial insemination (AI) program on ovarian responses and pregnancy per AT (P/AI), and the effect of timing of the final GnRH to induce ovulation relative to AT on P/AI. In experiment 1, 605 Holstein heifers were synchronized for their second insemination and assigned randomly to receive GnRH on study d 0 (n = 298) or to remain as untreated controls (n = 307). Ovaries were scanned on study d 0 and 5. All heifers received a controlled internal drug-release (CIDR) insert containing progesterone on d 0, a single injection of PGF(2 alpha),, and removal of the CIDR on d 5, and GnRH concurrent with timed AT on d 8. Blood was analyzed for progesterone at AI. Pregnancy was diagnosed on d 32 and 60 after AI. Ovulation on study d 0 was greater for GnRH than control (35.4 vs. 10.6%). Presence of a new corpus luteum (CL) at PGF(2 alpha),, injection was greater for GnRH than for control (43.1 vs. 20.8%), although the proportion of heifers with a CL at PGF(2 alpha) did not differ between treatments and averaged 87.1%. Progesterone on the day of AT was greater for GaRH than control (0.50 +/- 0.07 vs. 0.28 +/- 0.07 ng/mL). The proportion of heifers at AI with progesterone <0.5 ng/mL was less for GURH than for control (73.8 vs. 88.2%). The proportion of heifers in estrus at AI did not differ between treatments and averaged 66.8%. Pregnancy per AI was not affected by treatment at d 32 or 60 (GnRH = 52.5 and 49.8% vs. control = 54.1 and 50.0%), and pregnancy loss averaged 6.0%. Responses to GnRH were not influenced by ovarian status on study d 0. In experiment 2, 1,295 heifers were synchronized for their first insemination and assigned randomly to receive a CIDR on d 0, PGF(2 alpha) and removal of the CIDR on d 5, and either GnRH 56 h after PGF(2 alpha) and AI 16 h later (OVS56, n = 644) or GnRH concurrent with AI 72 h after PGF(2 alpha) (COS72; n = 651). Estrus at AI was greater for COS72 than for OVS56 (61.4 vs. 47.5). Treatment did not affect P/AI on d 32 in heifers displaying signs of estrus at AI, but COS72 improved P/AI compared with OVS56 (55.0 vs. 47.6%) in those not in estrus at AI. Similarly, P/AI on d 60 did not differ between treatments for heifers displaying estrus, but COS72 improved P/AI compared with OVS56 (53.0 vs. 44.7%) in those not in estrus at AI. Administration of GnRH on the first day of the 5-d timed AI program resulted in low ovulation rate and no improvement in P/AI when heifers received a single PGF(2 alpha) injection 5 d later. Moreover, extending the proestrus by delaying the finAI GnRH from 56 to 72 h concurrent with AI benefited fertility of dairy heifers that did not display signs of estrus at insemination following the 5-d timed AI protocol.