968 resultados para Inducible Cyclooxygenase Cox-2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated whether interleukin-4 (IL-4) is present and capable of reducing inflammatory changes seen in ifosfamide-induced hemorrhagic cystitis. Male Swiss mice were treated with saline or ifosfamide alone or ifosfamide with the classical protocol with mesna and analyzed by changes in bladder wet weight (BWW), macroscopic and microscopic parameters, exudate, and hemoglobin quantification. In other groups, IL-4 was administered intraperitoneally 1 h before ifosfamide. In other experimental groups, C57BL/6 WT (wild type) and C57BL/6 WT IL-4 (-/-) knockout animals were treated with ifosfamide and analyzed for changes in BWW. Quantification of bladder IL-4 protein by ELISA in control, ifosfamide-, and mesna-treated groups was performed. Immunohistochemistry to tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) as well as protein identification by Western blot assay for inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was carried out on ifosfamide- and IL-4-treated animals. In other experimental groups, antiserum against IL-4 was given 30 min before ifosfamide. In IL-4-treated animals, the severity of hemorrhagic cystitis was significantly milder than in animals treated with ifosfamide only, an effect that was reverted with serum anti-IL-4. Moreover, knockout animals for IL-4 (-/-) exhibit a worse degree of inflammation when compared to C57BL/6 wild type. Exogenous IL-4 also attenuated TNF-alpha, IL-1 beta, iNOS, and COX-2 expressions in ifosfamide-treated bladders. IL-4, an anti-inflammatory cytokine, attenuates the inflammation seen in ifosfamide-induced hemorrhagic cystitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical investigation of the n-hexane and EtOAc fractions of the ethanolic extract from Styrax pohlii (Styracaceae) aerial parts resulted in the isolation of the benzofuran nor-neolignan derivatives egonol (1), homoegonol (2), homoegonol gentiobioside (3), homoegonol glucoside (4) and egonol gentiobioside (5). This is the first report of compounds 1-5 in S. pohlii. Compounds 1-5, the acetyl derivatives 1a and 2a, the ethanolic extract (EE), the n-hexane fraction (HF) and EtOAc fraction (EF) were tested for their inhibitory activities against COX-1 and COX-2. The results showed that EE, HF, EF and compounds 1-5 and 1 a-2 a shown weak to moderate inhibition of COX-1 and COX-2. Among the assayed nor-neolignans, 4 gave a COX-1 inhibition of 35.7% at 30 mu M. Compound 5 displayed a COX-2 inhibition of 19.7% at 30 mu M.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Th1/Th2 balance represents an important factor in the pathogenesis of renal ischemia-reperfusion injury (IRI). In addition, IRI causes a systemic inflammation that can affect other tissues, such as the lungs. To investigate the ability of renal IRI to modulate pulmonary function in a specific model of allergic inflammation, C57Bl/6 mice were immunized with ovalbumin/albumen on days 0 and 7 and challenged with an ovalbumin (OA) aerosol on days 14 and 21. After 24 h of the second antigen challenge, the animals were subjected to 45 minutes of ischemia. After 24 h of reperfusion, the bronchoalveolar lavage (BAL) fluid, blood and lung tissue were collected for analysis. Serum creatinine levels increased in both allergic and non-immunized animals subjected to IRI. However, BAL analysis showed a reduction in the total cells (46%) and neutrophils (58%) compared with control allergic animals not submitted to IRI. In addition, OA challenge induced the phosphorylation of ERK and Akt and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung homogenates. After renal IRI, the phosphorylation of ERK and expression of COX-2 and iNOS were markedly reduced; however, there was no difference in the phosphorylation of Akt between sham and ischemic OA-challenged animals. Mucus production was also reduced in allergic mice after renal IRI. IL-4, IL-5 and IL-13 were markedly down-regulated in immunized/challenged mice subjected to IRI. These results suggest that renal IRI can modulate lung allergic inflammation, probably by altering the Th1/Th2 balance and, at least in part, by changing cellular signal transduction factors. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of 3-(triazolyl)-coumarins were synthesized and tested as anti-inflammatory agents. It was possible to infer that these compounds do not alter the interaction of LPS with TLR-4 or TLR-2, as the intracellular pathways involved in the TNF-alpha secretion and COX-2 activity were not affected. Nevertheless, the compounds inhibited iNOS-derived NO production, without affecting the eNOS activity. The outcome of the docking studies showed that it pi center dot center dot center dot pi interactions with the heme group are important for the iNOS inhibition, thus making compound 3c a promising lead. Moreover, the efficacy of this compound was visualized by the reduced number of neutrophils in the LPS-inflamed subcutaneous tissue. Together, biological and docking data show that triazolyl-substituted coumarins, that can act on iNOS, are a good scaffold to be explored. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aimed to show the in vivo mechanisms of action of an indole-thiazolidine molecule peroxisome-proliferator activated receptor pan-agonist (PPAR pan) and cyclooxygenase (COX) inhibitor, LYSO-7, in an ethanol/HCl-induced (Et/HCl) gastric lesion model. Swiss male mice were treated with vehicle, LYSO-7 or Bezafibrate (p.o.) 1 hour before oral administration of Et/HCl (60%/0.03M). In another set of assays, animals were injected i.p. with an anti-granulocyte antibody, GW9962 or L-NG-nitroarginine methyl ester (L-NAME) before treatment. One hour after Et/HCl administration, neutrophils were quantified in the blood and bone marrow and the gastric microcirculatory network was studied in situ. The gastric tissue was used to quantify the percentage of damaged area, as well as myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) protein and PPARγ protein and gene expression. Acid secretion was evaluated by the pylorus ligation model. LYSO-7 or Bezafibrate treatment reduced the necrotic area. LYSO-7 treatment enhanced PPARγ gene and protein expression in the stomach, and impaired local neutrophil influx and stasis of the microcirculatory network caused by Et/HCl administration. The effect seemed to be due to PPARγ agonist activity, as the LYSO-7 effect was abolished in GW9962 pre-treated mice. The reversal of microcirculatory stasis, but not neutrophil influx, was mediated by nitric oxide (NO), as L-NAME pre-treatment abolished the LYSO-7-mediated reestablishment of microcirculatory blood flow. This effect may depend on enhanced eNOS protein expression in injured gastric tissue. The pH and concentration of H(+) in the stomach were not modified by LYSO-7 treatment. In addition, LYSO-7 may induce less toxicity, as 28 days of oral treatment did not induce weight loss, as detected in pioglitazone treated mice. Thus, we show that LYSO-7 may be an effective treatment for gastric lesions by controlling neutrophil influx and microcirculatory blood flow mediated by NO

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS) causes hepatic injury that is mediated, in part, by upregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Ketamine has been shown to prevent these effects. Because upregulation of heme oxygenase-1 (HO-1) has hepatoprotective effects, as does carbon monoxide (CO), an end product of the HO-1 catalytic reaction, we examined the effects of HO-1 inhibition on ketamine-induced hepatoprotection and assessed whether CO could attenuate LPS-induced hepatic injury. One group of rats received ketamine (70 mg/kg ip) or saline concurrently with either the HO-1 inhibitor tin protoporphyrin IX (50 micromol/kg ip) or saline. Another group of rats received inhalational CO (250 ppm over 1 h) or room air. All rats were given LPS (20 mg/kg ip) or saline 1 h later and euthanized 5 h after LPS or saline. Liver was collected for iNOS, COX-2, and HO-1 (Western blot), NF-kappaB and PPAR-gamma analysis (EMSA), and iNOS and COX-2 mRNA analysis (RT-PCR). Serum was collected to measure alanine aminotransferase as an index of hepatocellular injury. HO-1 inhibition attenuated ketamine-induced hepatoprotection and downregulation of iNOS and COX-2 protein. CO prevented LPS-induced hepatic injury and upregulation of iNOS and COX-2 proteins. Although CO abolished the ability of LPS to diminish PPAR-gamma activity, it enhanced NF-kappaB activity. These data suggest that the hepatoprotective effects of ketamine are mediated primarily by HO-1 and its end product CO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A toxic dose of the nitric oxide (NO) donor S-nitrosoglutathione (GSNO; 1 mM) promoted apoptotic cell death of RAW 264.7 macrophages, which was attenuated by cellular preactivation with a nontoxic dose of GSNO (200 μM) or with lipopolysaccharide, interferon-γ, and NG-monomethyl-l-arginine (LPS/IFN-γ/NMMA) for 15 h. Protection from apoptosis was achieved by expression of cyclooxygenase-2 (Cox-2). Here we investigated the underlying mechanisms leading to Cox-2 expression. LPS/IFN-γ/NMMA prestimulation activated nuclear factor (NF)-κB and promoted Cox-2 expression. Cox-2 induction by low-dose GSNO demanded activation of both NF-κB and activator protein-1 (AP-1). NF-κB supershift analysis implied an active p50/p65 heterodimer, and a luciferase reporter construct, containing four copies of the NF-κB site derived from the murine Cox-2 promoter, confirmed NF-κB activation after NO addition. An NF-κB decoy approach abrogated not only Cox-2 expression after low-dose NO or after LPS/IFN-γ/NMMA but also inducible protection. The importance of AP-1 for Cox-2 expression and cell protection by low-level NO was substantiated by using the extracellular signal-regulated kinase inhibitor PD98059, blocking NO-elicited Cox-2 expression, but leaving the cytokine signal unaltered. Transient transfection of a dominant-negative c-Jun mutant further attenuated Cox-2 expression by low-level NO. Whereas cytokine-mediated Cox-2 induction relies on NF-κB activation, a low-level NO–elicited Cox-2 response required activation of both NF-κB and AP-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostaglandins formed by cyclooxygenase-1 (COX-1) or COX-2 produce hyperalgesia in sensory nerve endings. To assess the relative roles of the two enzymes in pain processing, we compared responses of COX-1- or COX-2-deficient homozygous and heterozygous mice with wild-type controls in the hot plate and stretching tests for analgesia. Preliminary observational studies determined that there were no differences in gross parameters of behavior between the different groups. Surprisingly, on the hot plate (55°C), the COX-1-deficient heterozygous groups showed less nociception, because mean reaction time was longer than that for controls. All other groups showed similar reaction times. In the stretching test, there was less nociception in COX-1-null and COX-1-deficient heterozygotes and also, unexpectedly, in female COX-2-deficient heterozygotes, as shown by a decreased number of writhes. Measurements of mRNA levels by reverse transcription–PCR demonstrated a compensatory increase of COX-1 mRNA in spinal cords of COX-2-null mice but no increase in COX-2 mRNA in spinal cords of COX-1-null animals. Thus, compensation for the absence of COX-1 may not involve increased expression of COX-2, whereas up-regulation of COX-1 in the spinal cord may compensate for the absence of COX-2. The longer reaction times on the hot plate of COX-1-deficient heterozygotes are difficult to explain, because nonsteroid anti-inflammatory drugs have no analgesic action in this test. Reduction in the number of writhes of the COX-1-null and COX-1-deficient heterozygotes may be due to low levels of COX-1 at the site of stimulation with acetic acid. Thus, prostaglandins made by COX-1 mainly are involved in pain transmission in the stretching test in both male and female mice, whereas those made by COX-2 also may play a role in the stretching response in female mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclooxygenase (COX) product, prostacyclin (PGI2), inhibits platelet activation and vascular smooth-muscle cell migration and proliferation. Biochemically selective inhibition of COX-2 reduces PGI2 biosynthesis substantially in humans. Because deletion of the PGI2 receptor accelerates atherogenesis in the fat-fed low density lipoprotein receptor knockout mouse, we wished to determine whether selective inhibition of COX-2 would accelerate atherogenesis in this model. To address this hypothesis, we used dosing with nimesulide, which inhibited COX-2 ex vivo, depressed urinary 2,3 dinor 6-keto PGF1α by approximately 60% but had no effect on thromboxane formation by platelets, which only express COX-1. By contrast, the isoform nonspecific inhibitor, indomethacin, suppressed platelet function and thromboxane formation ex vivo and in vivo, coincident with effects on PGI2 biosynthesis indistinguishable from nimesulide. Indomethacin reduced the extent of atherosclerosis by 55 ± 4%, whereas nimesulide failed to increase the rate of atherogenesis. Despite their divergent effects on atherogenesis, both drugs depressed two indices of systemic inflammation, soluble intracellular adhesion molecule-1, and monocyte chemoattractant protein-1 to a similar but incomplete degree. Neither drug altered serum lipids and the marked increase in vascular expression of COX-2 during atherogenesis. Accelerated progression of atherosclerosis is unlikely during chronic intake of specific COX-2 inhibitors. Furthermore, evidence that COX-1-derived prostanoids contribute to atherogenesis suggests that controlled evaluation of the effects of nonsteroidal anti-inflammatory drugs and/or aspirin on plaque progression in humans is timely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The highest concentrations of prostaglandins in nature are found in the Caribbean gorgonian Plexaura homomalla. Depending on its geographical location, this coral contains prostaglandins with typical mammalian stereochemistry (15S-hydroxy) or the unusual 15R-prostaglandins. Their metabolic origin has remained the subject of mechanistic speculations for three decades. Here, we report the structure of a type of cyclooxygenase (COX) that catalyzes transformation of arachidonic acid into 15R-prostaglandins. Using a homology-based reverse transcriptase–PCR strategy, we cloned a cDNA corresponding to a COX protein from the R variety of P. homomalla. The deduced peptide sequence shows 80% identity with the 15S-specific coral COX from the Arctic soft coral Gersemia fruticosa and ≈50% identity to mammalian COX-1 and COX-2. The predicted tertiary structure shows high homology with mammalian COX isozymes having all of the characteristic structural units and the amino acid residues important in catalysis. Some structural differences are apparent around the peroxidase active site, in the membrane-binding domain, and in the pattern of glycosylation. When expressed in Sf9 cells, the P. homomalla enzyme forms a 15R-prostaglandin endoperoxide together with 11R-hydroxyeicosatetraenoic acid and 15R-hydroxyeicosatetraenoic acid as by-products. The endoperoxide gives rise to 15R-prostaglandins and 12R-hydroxyheptadecatrienoic acid, identified by comparison to authentic standards. Evaluation of the structural differences of this 15R-COX isozyme should provide new insights into the substrate binding and stereospecificity of the dioxygenation reaction of arachidonic acid in the cyclooxygenase active site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial LPS triggers dramatic changes in gene expression in macrophages. We show here that LPS regulated several members of the histone deacetylase (HDAC) family at the mRNA level in murine bone marrow-derived macrophages (BMM). LPS transiently repressed, then induced a number of HDACs (Hdac-4, 5, 7) in BMM, whereas Hdac-1 mRNA was induced more rapidly. Treatment of BMM with trichostatin A (TSA), an inhibitor of HDACs, enhanced LPS-induced expression of the Cox-2, Cxcl2, and Ifit2 genes. In the case of Cox-2, this effect was also apparent at the promoter level. Overexpression of Hdac-8 in RAW264 murine macrophages blocked the ability of LPS to induce Cox-2 mRNA. Another class of LPS-inducible genes, which included Ccl2, Ccl7, and Edn1, was suppressed by TSA, an effect most likely mediated by PU.1 degradation. Hence, HDACs act as potent and selective negative regulators of proinflammatory gene expression and act to prevent excessive inflammatory responses in macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To assess the effects of selective cyclo-oxygenase-2 (COX 2) inhibitors and traditional non-steroidal anti-inflammatory drugs (NSAIDs) on the risk of vascular events. Design: Meta-analysis of published and unpublished tabular data from randomised trials, with indirect estimation of the effects of traditional NSAIDs. Data sources: Medline and Embase (January 1966 to April 2005); Food and Drug Administration records; and data on file from Novartis, Pfizer, and Merck. Review methods: Eligible studies were randomised trials that included a comparison of a selective COX 2 inhibitor versus placebo or a selective COX 2 inhibitor versus a traditional NSAID, of at least four weeks' duration, with information on serious vascular events (defined as myocardial infarction, stroke, or vascular death). Individual investigators and manufacturers provided information on the number of patients randomised, numbers of vascular events, and the person time of follow-up for each randomised group. Results: In placebo comparisons, allocation to a selective COX 2 inhibitor was associated with a 42% relative increase in the incidence of serious vascular events (1.2%/year v 0.9%/year; rate ratio 1.42, 95% confidence interval 1.13 to 1.78; P = 0.003), with no significant heterogeneity among the different selective COX 2 inhibitors. This was chiefly attributable to an increased risk of myocardial infarction (0.6%/year v 0.3%/year; 1.86, 1.33 to 2.59; P = 0.0003), with little apparent difference in other vascular outcomes. Among trials of at least one year's duration (mean 2.7 years), the rate ratio for vascular events was 1.45 (1.12 to 1.89; P = 0.005). Overall, the incidence of serious vascular events was similar between a selective COX 2 inhibitor and any traditional NSAID (1.0%/year v 0.9/%year; 1.16, 0.97 to 1.38; P = 0.1). However, statistical heterogeneity (P = 0.001) was found between trials of a selective COX 2 inhibitor versus naproxen (1.57, 1.21 to 2.03) and of a selective COX 2 inhibitor versus non-naproxen NSAIDs (0.88, 0.69 to 1.12). The summary rate ratio for vascular events, compared with placebo, was 0.92 (0.67 to 1.26) for naproxen, 1.51 (0.96 to 2.37) for ibuprofen, and 1.63 (1.12 to 2.37) for diclofenac. Conclusions: Selective COX 2 inhibitors are associated with a moderate increase in the risk of vascular events, as are high dose regimens of ibuprofen and diclofenac, but high dose naproxen is not associated with such an excess.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostaglandins control osteoblastic and osteoclastic function under physiological or pathological conditions and are important modulators of the bone healing process. The non-steroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) activity and consequently prostaglandins synthesis. Experimental and clinical evidence has indicated a risk for reparative bone formation related to the use of non-selective (COX-1 and COX-2) and COX-2 selective NSAIDs. Ketorolac is a non-selective NSAID which, at low doses, has a preferential COX-1 inhibitory effect and etoricoxib is a new selective COX-2 inhibitor. Although literature data have suggested that ketorolac can interfere negatively with long bone fracture healing, there seems to be no study associating etoricoxib with reparative bone formation. Paracetamol/acetaminophen, one of the first choices for pain control in clinical dentistry, has been considered a weak anti-inflammatory drug, although supposedly capable of inhibiting COX-2 activity in inflammatory sites. OBJECTIVE: The purpose of the present study was to investigate whether paracetamol, ketorolac and etoricoxib can hinder alveolar bone formation, taking the filling of rat extraction socket with newly formed bone as experimental model. MATERIAL AND METHODS: The degree of new bone formation inside the alveolar socket was estimated two weeks after tooth extraction by a differential point-counting method, using an optical microscopy with a digital camera for image capture and histometry software. Differences between groups were analyzed by ANOVA after confirming a normal distribution of sample data. RESULTS AND CONCLUSIONS: Histometric results confirmed that none of the tested drugs had a detrimental effect in the volume fraction of bone trabeculae formed inside the alveolar socket.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of myotoxin III (MT-III), a phospholipase A(2) (sPLA(2)) from Bothrops asper snake venom, and crotoxin B (CB), a neurotoxic and myotoxic sPLA2 from the venom of Crotalus durissus terrificus, on cyclooxygenases (COXs) expression and biosynthesis of prostaglandins (PGs) were evaluated, together with the mechanisms involved in these effects. Upon intraperitoneal injection in mice, both sPLA(2)s promoted the synthesis of PGD(2) and PGE(2), with a different time-course. MT-III, but not CB, induced COX-2 expression by peritoneal leukocytes without modification on COX-1 constitutive expression, whereas CB increased the constitutive activity of COX-1. MT-III increased the enzymatic activity of COX-1 and COX-2. Similar effects were observed when these sPLA(2)s were incubated with isolated macrophages, evidencing a direct effect on these inflammatory cells. Moreover, both toxins elicited the release of arachidonic acid from macrophages in vitro. inhibition of cPLA(2) by AACOCF(3), but not of iPLA(2) by PACOCF(3) or BEL, significantly reduced PGD2, PGE2 and arachidonic acid (AA) release promoted by MT-III. These inhibitors did not affect MT-III-induced COX-2 expression. In contrast, cPLA2 inhibition did not modify the effects of CB, whereas iPLA2 inhibition reduced PGD2 and AA production induced by CB. These findings imply that distinct regulatory mechanisms leading to PGs` synthesis are triggered by these snake venom sPLA(2)s. Such differences are likely to explain the dissimilar patterns of inflammatory reaction elicited by these sPLA(2)s in vivo. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the participation of mu-opioid-receptor activation in body temperature (T-b) during normal and febrile conditions (including activation of heat conservation mechanisms) and in different pathways of LPS-induced fever. The intracerebroventricular treatment of male Wistar rats with the selective opioid mu-receptor-antagonist cyclic D-Phe-Cys-Try-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 0.1-1.0 mu g) reduced fever induced by LPS (5.0 mu g/kg) but did not change Tb at ambient temperatures of either 20 C or 28 C. The subcutaneous, intracerebroventricular, and intrahypothalamic injection of morphine (1.0 -10.0 mg/kg, 3.0 -30.0 mu g, and 1 -100 ng, respectively) produced a dose-dependent increase in Tb. Intracerebroventricular morphine also produced a peripheral vasoconstriction. Both effects were abolished by CTAP. CTAP (1.0 mu g icv) reduced the fever induced by intracerebroventricular administration of TNF-alpha (250 ng), IL-6 (300 ng), CRF (2.5 mu g), endothelin-1 (1.0 pmol), and macrophage inflammatory protein (500 pg) and the first phase of the fever induced by PGF(2 alpha) (500.0 ng) but not the fever induced by IL-1 beta (3.12 ng) or PGE(2) (125.0 ng) or the second phase of the fever induced by PGF(2 alpha). Morphine-induced fever was not modified by the cyclooxygenase (COX) inhibitor indomethacin (2.0 mg/kg). In addition, morphine injection did not induce the expression of COX-2 in the hypothalamus, and CTAP did not modify PGE2 levels in cerebrospinal fluid or COX-2 expression in the hypothalamus after LPS injection. In conclusion, our results suggest that LPS and endogenous pyrogens (except IL-1 beta and prostaglandins) recruit the opioid system to cause a mu-receptor-mediated fever.