880 resultados para Indole-3-acetic-acid Levels


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Al-pillared clay catalyst obtained by exposing activated clay powder to sulfuric acid and aluminium salts and calcining in air at 373-673 K, was found to be highly active for the title reaction. The results indicated that pillared layer clay of the mixed oxide has been employed as parent catalysts for their definite structure and special properties which can be modified by the substitution of L and B acid sites cations. Solid acid catalyst of Supported aluminium was found to be highly active and selective at the 373-473 K temperature range for heterogeneous esterification. The activity is mainly attributed to the Lewis (and a considerably small number of Bronsted) acid sites whose number and strength increased due to pillaring. The water produced in the esterification can be induced by Al3+, which makes the catalyst surface to form strong B acid. Their acidities are obtained by pH measurement. If only B acid sites are > 70%, and pH < 1 in the 2-ethoxyethanol, there exists an activity of esterification. The used catalyst gave identical results with that of the fresh one. X-ray diffraction spectra show that the composition and active phase of the used catalysts are the same as the fresh ones. The kinetic study of the reaction was carried out by an integral method of analysis. The kinetic equation of surface esterification is y = 2.36x - 0.98.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: 2-ethylhexylphosphonic acid mono-(2-ethylhexyl) ester (HEHEHP, H(2)A(2)) has been applied extensively to the extraction of rare earths. However, there are some limitations to its further utilization and the synergistic extraction of rare earths with mixtures of HEHEHP and another extractant has attracted much attention. Organic carboxylic acids are also a type of extractant employed for the extraction of rare earths, e.g. naphthenic acid has been widely used to separate yttrium from rare earths. Compared with naphthenic acid, sec-nonylphenoxy acetic acid (CA100, H2B2) has many advantages such as stable composition, low solubility, and strong acidity in the aqueous phase. In the present study, the extraction of rare earths with mixtures of HEHEHP and CA100 has been investigated. The separation of the rare earth elements is also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extraction of rare earth elements from chloride medium by mixtures of sec-nonylphenoxy acetic acid (CA100) with bis(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex301) or bis(2,4,4-trimethylpentyl) monothiophosphinic acid (Cyanex302) in n-heptane has been studied. The synergistic enhancement of the extraction of lanthanum (III) by mixtures of CA100 with Cyanex301 has been investigated using the methods of slope analysis and constant mole. The extracted complex of lanthanum (III) is determined. The logarithm of the equilibrium constant is calculated as - 1.41. The formation constants and the thermodynamic functions, Delta H, Delta G, and Delta S have also been determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase and morphology variations of titania prepared in ethanol/acetic acid mixture solvents have been systematically investigated. X-ray diffraction results and microscopy observations reveal that pure anatase aggregates consisted of small nanoparticles, pure rutile microspheres comprised of nanofibers, and their mixtures could be obtained by varying ratios of ethanol to acetic acid under solvothermal conditions. The contents of anatase and rutile in the mixed phases also vary with the ratios of ethanol to acetic acid. Field emission scanning electron microscopy and high resolution transmission electron microscopy results show that the two phases are separated from each other in final products and form aggregates with morphologies resembling to their pure phase products obtained under favorable conditions. The as-produced rutile nanofibers, either in pure phase or in mixed phases, tend to grow into hollow microspheres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extraction and separation of yttrium from the rare earths in chloride medium using sec-octylphenoxy acetic acid (CA-12), tri-n-butyl phosphate (TBP) as modifier, in kerosene has been investigated. The separation coefficients, beta, were obtained and the extraction selectivity has been enhanced when compared with that of naphthenic acid. The experimental results indicated that CA-12-TBP system could be employed to separate yttrium, from rare earths. Fractional extraction (15 stages for extraction and 10 stages for scrubbing) was studied, the raffinate of the first stage was abundant in purity yttrium of 99.5%, with a yield of > 95%, percentage of yttrium in the mixture rare earths was less than 5% in the loaded organic phase of the 25th stage and loaded capability was about 0.2 mol/L.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

alpha(1)-VOPO4, alpha(II)-VOPO4 and beta-VOPO4 have been investigated as catalysts for the gas phase oxidative dehydrogenation (ODH) of cyclohexane to cyclohexene with the addition of acetic acid (HOAc) in the feeds in a fixed bed reactor. Different VOPO4 phases showed different acidity and reducibility. beta-VOPO4 phase is more active than alpha(I)-VOPO4 and alpha(II)-VOPO4 in the ODH without acetic acid addition. In the presence of acetic acid, the acidity of the catalyst may play an important role in the ODH process. Due to higher acidity, alpha(I)-VOPO4 phase catalyst gives better catalytic performances than alpha(I)-VOPO4 and beta-VOPO4 for the ODH of cyclohexane by adding of acetic acid in the reactants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of adding acetic acid on the product distribution in gas phase oxidative dehydrogenation of cyclohexane over alpha(1)-VOPO4 catalyst was investigated. The role of acetic acid in the reaction process was put forward. The proposed mechanism is that acetic acid take precedence of cyclohexane adsorbing on the active sites of alpha(1)-VOPO4 catalyst to form isolated active site. Thus, cyclohexene species can desorb quickly from the active sites, avoiding its deep oxidation dehydrogenation. Almost 100% selectivity to cyclohexene could be obtained when the molar ratio of acetic acid to cyclohexane was 12.9:1 at 450 degrees C, the conversion of cyclohexane was 6.9%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3-Mercaptopropionic add monolayer protected gold nanoclusters (MPA-MPCs) were synthesized and characterized by transmission electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The exact value of quantized double-layer capacitance of MPCS in aqueous media was obtained by differential pulse voltammograms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interfacial behavior of sec-nonylphenoxy acetic acid (CA-100) at various diluents/(H, Na)Cl interfaces was examined using the Du Nouy ring method. Different adsorption isotherms such as the Gibbs and Szyszkowski were in good agreement with the experimental data. The values of interfacial excess at saturated interface increase in the following order: n-heptane > kerosene > cyclohexane > CCl4 > toluene > benzene > chloroform. The effects of temperature, acidity, and ionic strength of the aqueous phase on the interfacial activity of CA- 100 were also examined. The interfacial-activity data were used to discuss the mechanism and kinetics of yttrium (Y) extraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extraction kinetics of ytterbium with sec-nonylphenoxy acetic acid (CA-100) in heptane have been investigated using a constant interfacial area cell with laminar flow. The influence of stirring speed and temperature on the rate indicated that the extraction rate was controlled by the experiment conditions. The plot of interfacial area on the rate showed a linear relationship. This fact together with the low solubility in water and strong surface activity of CA-100 at heptane-water interfaces made the interface the most probable locale for the chemical reactions. The influences of extractant concentration and hydrogen ion concentration on the extraction rate were investigated, and the forward and reverse rate equations for the ytterbium extraction with CA-100 were also obtained. Based on the experimental data, the apparent forward extraction rate constant was calculated. Interfacial reaction models were proposed that agree well with the rate equations obtained from experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Separation of scandium(III), yttrium(III) and lanthanum(III) was performed by high-performance centrifugal partition chromatography (HPCPC) employing the stationary phase of S-octyl phenyloxy acetic acid (CA-12). The liquid-liquid extraction behavior of CA-12 for Sc(III), Y(III) and La(III), the acidity of aqueous phase, and the operation conditions of HPCPC were examined. The retention volume (V-R) increased with the order of Y(III), La(III) and Sc(III) accompanied with the elution of the mobile phase in different pH, which is lowered from 4.6 to 2.1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Such physicochemical properties of sec-nonylphenoxy acetic acid (CA-100) as the solubility in water, acid dissociation constant in water, dimerization constant in heptane, and distribution constant in organic solvent-water were measured by two-phase titration. The extraction behaviors of scandium (III), yttrium (III), lanthanides (III), and divalent metal ions from hydrochloric acid solutions with CA-100 in heptane have been investigated, and the possibilities of separating scandium (yttrium) from lanthanides and divalent metal ions have been carefully discussed. The stoichiometries of the extracted metal complexes were investigated by the slope-analysis technique. The effect of the nature of diluent on the extraction of yttrium (III) with CA100 has been studied and correlated with the dielectric constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of RE (La, Gd, Er, Yb and Y) extraction with sec-octylphenoxy acetic acid was investigated using a constant interfacial area cell with laminar flow at 303 K. The natures of the extracted complexes have some effect on the extraction rate which is controlled by the reaction rate of M(III) and extractant molecules at two-phase interface for Er(III), Yb(III) and Y(III), by a mixed chemical reaction-diffusion for Gd(III) and a diffusion for La( III). The extractant molecules tend to adsorb at the interface. So an interfacial extraction reaction model was derived.