995 resultados para Indexing structures
Resumo:
This paper presents a higher-order beam-column formulation that can capture the geometrically non-linear behaviour of steel framed structures which contain a multiplicity of slender members. Despite advances in computational frame software, analyses of large frames can still be problematic from a numerical standpoint and so the intent of the paper is to fulfil a need for versatile, reliable and efficient non-linear analysis of general steel framed structures with very many members. Following a comprehensive review of numerical frame analysis techniques, a fourth-order element is derived and implemented in an updated Lagrangian formulation, and it is able to predict flexural buckling, snap-through buckling and large displacement post-buckling behaviour of typical structures whose responses have been reported by independent researchers. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. The higher-order element forms a basis for augmenting the geometrically non-linear approach with material non-linearity through the refined plastic hinge methodology described in the companion paper.
Resumo:
In the companion paper, a fourth-order element formulation in an updated Lagrangian formulation was presented to handle geometric non-linearities. The formulation of the present paper extends this to include material non-linearity by proposing a refined plastic hinge approach to analyse large steel framed structures with many members, for which contemporary algorithms based on the plastic zone approach can be problematic computationally. This concept is an advancement of conventional plastic hinge approaches, as the refined plastic hinge technique allows for gradual yielding, being recognized as distributed plasticity across the element section, a condition of full plasticity, as well as including strain hardening. It is founded on interaction yield surfaces specified analytically in terms of force resultants, and achieves accurate and rapid convergence for large frames for which geometric and material non-linearity are significant. The solutions are shown to be efficacious in terms of a balance of accuracy and computational expediency. In addition to the numerical efficiency, the present versatile approach is able to capture different kinds of material and geometric non-linearities on general applications of steel structures, and thereby it offers an efficacious and accurate means of assessing non-linear behaviour of the structures for engineering practice.
Resumo:
Finite element frame analysis programs targeted for design office application necessitate algorithms which can deliver reliable numerical convergence in a practical timeframe with comparable degrees of accuracy, and a highly desirable attribute is the use of a single element per member to reduce computational storage, as well as data preparation and the interpretation of the results. To this end, a higher-order finite element method including geometric non-linearity is addressed in the paper for the analysis of elastic frames for which a single element is used to model each member. The geometric non-linearity in the structure is handled using an updated Lagrangian formulation, which takes the effects of the large translations and rotations that occur at the joints into consideration by accumulating their nodal coordinates. Rigid body movements are eliminated from the local member load-displacement relationship for which the total secant stiffness is formulated for evaluating the large member deformations of an element. The influences of the axial force on the member stiffness and the changes in the member chord length are taken into account using a modified bowing function which is formulated in the total secant stiffness relationship, for which the coupling of the axial strain and flexural bowing is included. The accuracy and efficiency of the technique is verified by comparisons with a number of plane and spatial structures, whose structural response has been reported in independent studies.
Resumo:
The support for typically out-of-vocabulary query terms such as names, acronyms, and foreign words is an important requirement of many speech indexing applications. However, to date many unrestricted vocabulary indexing systems have struggled to provide a balance between good detection rate and fast query speeds. This paper presents a fast and accurate unrestricted vocabulary speech indexing technique named Dynamic Match Lattice Spotting (DMLS). The proposed method augments the conventional lattice spotting technique with dynamic sequence matching, together with a number of other novel algorithmic enhancements, to obtain a system that is capable of searching hours of speech in seconds while maintaining excellent detection performance
Resumo:
Graphene has been reported with record-breaking properties which have opened up huge potential applications. A considerable research has been devoted to manipulate or modify the properties of graphene to target a more smart nanoscale device. Graphene and carbon nanotube hybrid structure (GNHS) is one of the promising graphene derivates, while their mechanical properties have been rarely discussed in literature. Therefore, such a studied is conducted in this paper basing on the large-scale molecular dynamics simulation. The target GNHS is constructed by considering two separate graphene layers that being connected by single-wall carbon nanotubes (SWCNTs) according to the experimental observations. It is found that the GNHSs exhibit a much lower yield strength, Young’s modulus, and earlier yielding comparing with a bilayer graphene sheet. Fracture of studied GNHSs is found to fracture located at the connecting region between carbon nanotubes (CNTs) and graphene. After failure, monatomic chains are normally observed at the front of the failure region, and the two graphene layers at the failure region without connecting CNTs will adhere to each other, generating a bilayer graphene sheet scheme (with a layer distance about 3.4 Å). This study will enrich the current understanding of the mechanical performance of GNHS, which will guide the design of GNHS and shed lights on its various applications.
Resumo:
Diabetic peripheral neuropathy (DPN) is one of the most common long-term complications of diabetes. The accurate detection and quantification of DPN are important for defining at-risk patients, anticipating deterioration, and assessing new therapies. Current methods of detecting and quantifying DPN, such as neurophysiology, lack sensitivity, require expert assessment and focus primarily on large nerve fibers. However, the earliest damage to nerve fibers in diabetic neuropathy is to the small nerve fibers. At present, small nerve fiber damage is currently assessed using skin/nerve biopsy; both are invasive technique and are not suitable for repeated investigations.
Resumo:
Recent studies have linked the ability of novice (CS1) programmers to read and explain code with their ability to write code. This study extends earlier work by asking CS2 students to explain object-oriented data structures problems that involve recursion. Results show a strong correlation between ability to explain code at an abstract level and performance on code writing and code reading test problems for these object-oriented data structures problems. The authors postulate that there is a common set of skills concerned with reasoning about programs that explains the correlation between writing code and explaining code. The authors suggest that an overly exclusive emphasis on code writing may be detrimental to learning to program. Non-code writing learning activities (e.g., reading and explaining code) are likely to improve student ability to reason about code and, by extension, improve student ability to write code. A judicious mix of code-writing and code-reading activities is recommended.
Resumo:
The μO-conotoxins are an intriguing class of conotoxins targeting various voltage-dependent sodium channels and molluscan calcium channels. In the current study, we have shown MrVIA and MrVIB to be the first known peptidic inhibitors of the transient tetrodotoxin-resistant (TTX-R) Na+ current in rat dorsal root ganglion neurons, in addition to inhibiting tetrodotoxin-sensitive Na+ currents. Human TTX-R sodium channels are a therapeutic target for indications such as pain, highlighting the importance of the μO-conotoxins as potential leads for drug development. Furthermore, we have used NMR spectroscopy to provide the first structural information on this class of conotoxins. MrVIA and MrVIB are hydrophobic peptides that aggregate in aqueous solution but were solubilized in 50% acetonitrile/water. The three-dimensional structure of MrVIB consists of a small β-sheet and a cystine knot arrangement of the three-disulfide bonds. It contains four backbone “loops” between successive cysteine residues that are exposed to the solvent to varying degrees. The largest of these, loop 2, is the most disordered part of the molecule, most likely due to flexibility in solution. This disorder is the most striking difference between the structures of MrVIB and the known δ- and ω-conotoxins, which along with the μO-conotoxins are members of the O superfamily. Loop 2 of ω-conotoxins has previously been shown to contain residues critical for binding to voltage-gated calcium channels, and it is interesting to speculate that the flexibility observed in MrVIB may accommodate binding to both sodium and molluscan calcium channels.
Resumo:
Bridges are important infrastructures of all nations and are required for transportation of goods as well as human. A catastrophic failure can result in loss of lives and enormous financial hardship to the nation. Although various kinds of sensors are now available to monitor the health of the structures due to corrosion, they do not provide permanent and long term measurements. This paper investigates the fabrication of Carbon Nanotube (CNT) based composite sensors for corrosion detection of structures. Multi-wall CNT (MWCNT)/Nafion composite sensors were fabricated to evaluate their electrical properties for corrosion detection. The test specimens were subjected to real life corrosion experimental tests and the results confirm that the electrical resistance of the sensor electrode was dramatically changed due to corrosion.
Resumo:
Significant attention has been given in urban policy literature to the integration of land-use and transport planning and policies—with a view to curbing sprawling urban form and diminishing externalities associated with car-dependent travel patterns. By taking land-use and transport interaction into account, this debate mainly focuses on how a successful integration can contribute to societal well-being, providing efficient and balanced economic growth while accomplishing the goal of developing sustainable urban environments and communities. The integration is also a focal theme of contemporary urban development models, such as smart growth, liveable neighbourhoods, and new urbanism. Even though available planning policy options for ameliorating urban form and transport-related externalities have matured—owing to growing research and practice worldwide—there remains a lack of suitable evaluation models to reflect on the current status of urban form and travel problems or on the success of implemented integration policies. In this study we explore the applicability of indicator-based spatial indexing to assess land-use and transport integration at the neighbourhood level. For this, a spatial index is developed by a number of indicators compiled from international studies and trialled in Gold Coast, Queensland, Australia. The results of this modelling study reveal that it is possible to propose an effective metric to determine the success level of city plans considering their sustainability performance via composite indicator methodology. The model proved useful in demarcating areas where planning intervention is applicable, and in identifying the most suitable locations for future urban development and plan amendments. Lastly, we integrate variance-based sensitivity analysis with the spatial indexing method, and discuss the applicability of the model in other urban contexts.
Resumo:
The presence of spam in a document ranking is a major issue for Web search engines. Common approaches that cope with spam remove from the document rankings those pages that are likely to contain spam. These approaches are implemented as post-retrieval processes, that filter out spam pages only after documents have been retrieved with respect to a user’s query. In this paper we suggest to remove spam pages at indexing time, therefore obtaining a pruned index that is virtually “spam-free”. We investigate the benefits of this approach from three points of view: indexing time, index size, and retrieval performances. Not surprisingly, we found that the strategy decreases both the time required by the indexing process and the space required for storing the index. Surprisingly instead, we found that by considering a spam-pruned version of a collection’s index, no difference in retrieval performance is found when compared to that obtained by traditional post-retrieval spam filtering approaches.
Resumo:
The purpose of this paper is to describe a new decomposition construction for perfect secret sharing schemes with graph access structures. The previous decomposition construction proposed by Stinson is a recursive method that uses small secret sharing schemes as building blocks in the construction of larger schemes. When the Stinson method is applied to the graph access structures, the number of such “small” schemes is typically exponential in the number of the participants, resulting in an exponential algorithm. Our method has the same flavor as the Stinson decomposition construction; however, the linear programming problem involved in the construction is formulated in such a way that the number of “small” schemes is polynomial in the size of the participants, which in turn gives rise to a polynomial time construction. We also show that if we apply the Stinson construction to the “small” schemes arising from our new construction, both have the same information rate.
Resumo:
Many activities, from disaster response to project management, require cooperation among people from multiple organizations who initially lack interpersonal relationships and trust. Upon entering inter-organizational settings, pre-existing identities and expectations, along with emergent social roles and structures, may all influence trust between colleagues. To sort out these effects, we collected time-lagged data from three cohorts of military MBA students, representing 2,224 directed dyads, shortly after they entered graduate school. Dyads that shared organizational identity, boundary-spanning roles, and similar network positions (structural equivalence) were likely to have stronger professional ties and greater trust.
Resumo:
The visual and multidimensional representations like images and graphical structures related to biology provide great insights into understanding the complexities of different organisms. Especially, life scientists use different representations of molecular structures to answer biological questions and to better understand cellular processes. Combining results from two field studies, we explore the role of molecular structures in life scientists’ current work from a humanfactors perspective. Our main conclusion is that different representations of molecular structures, due to their visual nature, are important for supporting collaboration, constructing new knowledge and supporting scientists’ professional activities in general.
Resumo:
Streaming services like Spotify and Pandora pay many millions of dollars each year for the rights to the music they play. But how much of this ends up back with artists and songwriters? The answer: not an awful lot.