995 resultados para Inbred Mice


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous results have documented a burst of IL-4 mRNA that peaks in draining lymph nodes of susceptible BALB/c mice 16 h after infection with Leishmania major. The importance of this early IL-4 response in subsequent Th2 cell maturation is supported by observations showing that 1) neutralization of IL-4 at the initiation of infection or 2) administration of IL-12, which results in an inhibition of the 16 h IL-4 mRNA burst, inhibits Th2 cell development. However, both treatments are effective in hampering Th2 cell development only if given at a time when IL-4 has been produced for <48 h. At this time after infection, lymph node CD4+ T cells from BALB/c mice no longer respond to IL-12. This IL-12 unresponsiveness is prevented in mice treated with anti-IL-4 Abs at the initiation of infection. Finally, the inhibition of Th2 development in BALB/c mice treated with anti-IL-4 Abs at the onset of infection results from maintenance of IL-12 responsiveness, since it requires IL-12. Together, these results reveal a narrow window of time, between 16 h and <48 h after infection, during which IL-4 produced rapidly in BALB/c mice renders T cells unresponsive to IL-12, allowing their differentiation toward the Th2 phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies showed a fetal sheep liver extract (FSLE), in association with LPS, injected into aged (>20 months) mice reversed the altered polarization (increased IL-4 and IL-10 with decreased IL-2 and IFN-gamma) in cytokine production seen from ConA stimulated lymphoid cells of those mice. Aged mice show a >60% decline in numbers and suppressive function of both CD4(+)CD25(+)Foxp3(+)Treg and so-called Tr3 (CD4(+)TGFbeta(+)). Their number/function is restored to levels seen in control (8-week-old) mice by FSLE. We have reported at length on the ability of a novel pair of immunoregulatory molecules, members of the TREM family, namely CD200:CD200R, to control development of dendritic cells (DCs) which themselves regulate production of Foxp3(+) Treg. The latter express a distinct subset of TLRs which control their function. We report that a feature of the altered Treg expression following combined treatment with FSLE and monophosphoryl lipid A, MPLA (a bioactive component of lipid A of LPS) is the altered gene expression both of distinct subsets of TLRs and of CD200Rs. We speculate that this may represent one of the mechanisms by which FSLE and MPLA alter immunity in aged mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin controls glucose homeostasis by regulating glucose use in peripheral tissues, and its own production and secretion in pancreatic beta cells. These responses are largely mediated downstream of the insulin receptor substrates, IRS-1 and IRS-2 (refs 4-8), through distinct signalling pathways. Although a number of effectors of these pathways have been identified, their roles in mediating glucose homeostasis are poorly defined. Here we show that mice deficient for S6 kinase 1, an effector of the phosphatidylinositide-3-OH kinase signalling pathway, are hypoinsulinaemic and glucose intolerant. Whereas insulin resistance is not observed in isolated muscle, such mice exhibit a sharp reduction in glucose-induced insulin secretion and in pancreatic insulin content. This is not due to a lesion in glucose sensing or insulin production, but to a reduction in pancreatic endocrine mass, which is accounted for by a selective decrease in beta-cell size. The observed phenotype closely parallels those of preclinical type 2 diabetes mellitus, in which malnutrition-induced hypoinsulinaemia predisposes individuals to glucose intolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The survival rate and recovery of peripheral blood cells and platelets were studied in Balb/c mice subjected to different single doses of whole-body irradiation and treated with a combination of interleukin-3 (IL-3) and interleukin-11 (IL-11). In a first group of 20 mice, 7.5 Gy irradiation, immediately followed by 2 and 5 days therapy of IL-3 and IL-11, respectively, increased the survival rate to 82% compared to 20% in untreated controls. In a second group of mice irradiated with 7 Gy, we observed significantly higher platelet, white blood cell (WBC), and red blood cell (RBC) counts after treatment with both cytokines, as compared to IL-3 or IL-11 alone or untreated controls. In addition, the survival rate of the mice with the combined therapy was also increased to 84%, compared to 48% in untreated controls. Irradiation (8.5 Gy) gave 100% mortality for the control mice, and therapy with combined IL-3 plus IL-11 had only a marginal effect. Interestingly, syngeneic bone marrow transplantation (BMT) alone, performed 16 hours after irradiation, increased the survival rate to 70%, while BMT combined with administration of IL-3 plus IL-11 increased it to 97%. Furthermore, BMT combined with cytokine administration could partially prevent the severe WBC and RBC depletion observed in mice treated with BMT alone and promoted a more rapid recovery of platelets and RBC. These data show that the combination of IL-3 and IL-11 has a radioprotective effect and can enhance recovery of platelets, WBC, and RBC in irradiated mice. Combined IL-3 plus IL-11 therapy may be clinically useful in myelodepression, especially in platelet depletion related to radiation therapy or chemotherapy, or after bone marrow transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipids play crucial roles in many aspects of glial cell biology, affecting processes ranging from myelin membrane biosynthesis to axo-glial interactions. In order to study the role of lipid metabolism in myelinating glial cells, we specifically deleted in Schwann cells the Lpin1 gene, which encodes the Mg2+-dependent phosphatidate phosphatase (PAP1) enzyme necessary for normal triacylglycerol biosynthesis. The affected animals developed pronounced peripheral neuropathy characterized by myelin degradation, Schwann cell dedifferentiation and proliferation, and a reduction in nerve conduction velocity. The observed demyelination is mediated by endoneurial accumulation of the substrate of the PAP1 enzyme, phosphatidic acid (PA). In addition, we show that PA is a potent activator of the MEK-Erk pathway in Schwann cells, and that this activation is required for PA-induced demyelination. Our results therefore reveal a surprising role for PA in Schwann cell fate determination and provide evidence of a direct link between diseases affecting lipid metabolism and abnormal Schwann cell function

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wealth of literature has provided evidence that reactive tissue at the site of CNS injury is rich in chondroitin sulfate proteoglycans which may contribute to the non-permissive nature of the CNS. We have recently demonstrated using a murine model of human brachial plexus injury that the chondroitin sulfate proteoglycans Neurocan and Brevican are differentially expressed by two subsets of astrocytes in the spinal cord dorsal root entry zone (DREZ) following dorsal root lesion (Beggah et al., Neuroscience 133: 749-762, 2005). However, direct evidence for a growth-inhibitory role of these proteoglycans in vivo is still lacking. We therefore performed dorsal root lesion (rhizotomy) in mice deficient in both Neurocan and Brevican. Rhizotomy in these animals resulted in no significant increase in the number of sensory fibres regenerating through the DREZ compared to genetically matched controls. Likewise, a conditioning peripheral nerve lesion prior to rhizotomy, which increases the intrinsic growth capacity of sensory neurons, enhanced growth to the same extent in transgenic and control mice, indicating that absence of these proteoglycans alone is not sufficient to further promote entry into the spinal cord. In contrast, when priming of the median nerve was performed at a clinically relevant time, i.e. 7 weeks post-rhizotomy, the growth of a subpopulation of sensory axons across the DREZ was facilitated in Neurocan/Brevican-deficient, but not in control animals. This demonstrates for the first time that (i) Neurocan and/or Brevican contribute to the non-permissive environment of the DREZ several weeks after lesion and that (ii) delayed stimulation of the growth program of sensory neurons can facilitate regeneration across the DREZ provided its growth-inhibitory properties are attenuated. Post-injury enhancement of the intrinsic growth capacity of sensory neurons combined with removal of inhibitory chondroitin sulfate proteoglycans may therefore help to restore sensory function and thus attenuate the chronic pain resulting from human brachial plexus injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In contrast to intact BALB/c mice, BALB/c mice rendered deficient in Vbeta4+ CD4+ T cells develop a Th1 response to infection with Leishmania major and are resistant. Vbeta4-deficient BALB/c mice are unable to generate the early IL-4 transcription occurring in Vbeta4 Valpha8 CD4+ T cells of BALB/c mice within 1 day of infection. Here we demonstrate that treatment of Vbeta4-deficient BALB/c mice with IL-4 during the first 64 h after infection instructs Th2 cell development and susceptibility to infection. The demonstrated inability of IL-4 to reverse the resistant phenotype of BALB/c mice treated with anti-CD4 mAb the day before infection suggest that these effects of IL-4 require its interaction with CD4+ T cells. In contrast to draining lymph node cells from BALB/c mice, cells from Vbeta4-deficient BALB/c mice remain responsive to IL-12 following infection. Strikingly, administration of IL-4 to Vbeta4-deficient BALB/c mice renders their lymph node cells unresponsive to IL-12 by down-regulating IL-12R beta2-chain expression. This study directly demonstrates that in BALB/c mice IL-4 is necessary and sufficient to initiate the molecular events steering Th2 cell maturation and susceptibility to L. major.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first experimental evidence for the development of polarized CD4+ Th1 and Th2 responses in vivo has been obtained using the murine model of infection with Leishmania major, an intracellular parasite of macrophages in their vertebrate host. Genetically determined resistance and susceptibility to infection with this parasite have been clearly demonstrated to result from the development of polarized Th1 and Th2 responses, respectively. Using this model system, the dominant role of cytokines in the induction of polarized CD4+ responses has been validated in vivo. The requisite role of IL-4 in mediating both Th2 differentiation and susceptibility to infection in BALB/c mice has directed interest towards the search for evidence of IL-4 production early after infection and identification of its cellular source. We have been able to demonstrate a burst of IL-4 production in susceptible BALB/c mice within the first day of infection with L. major and could establish that this rapidly produced IL-4 instructed Th2 lineage commitment of subsequently activated CD4+ T cells and stabilized this commitment by downregulating IL-12 Rbeta2 chain expression, resulting in susceptibility to infection. Strikingly, this early IL-4 response to infection resulted from the cognate recognition of a single epitope in a distinctive antigen, LACK, from this complex microorganism by a restricted population of CD4+ T cells that express Vbeta4-Valpha8 T cell receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ectopic or tertiary lymphoid tissues (TLTs) are often induced at sites of chronic inflammation. They typically contain various hematopoietic cell types, high endothelial venules, and follicular dendritic cells; and are organized in lymph node-like structures. Although fibroblastic stromal cells may play a role in TLT induction and persistence, they have remained poorly defined. Herein, we report that TLTs arising during inflammation in mice and humans in a variety of tissues (eg, pancreas, kidney, liver, and salivary gland) contain stromal cell networks consisting of podoplanin(+) T-zone fibroblastic reticular cells (TRCs), distinct from follicular dendritic cells. Similar to lymph nodes, TRCs were present throughout T-cell-rich areas and had dendritic cells associated with them. They expressed lymphotoxin (LT) β receptor (LTβR), produced CCL21, and formed a functional conduit system. In rat insulin promoter-CXCL13-transgenic pancreas, the maintenance of TRC networks and conduits was partially dependent on LTβR and on lymphoid tissue inducer cells expressing LTβR ligands. In conclusion, TRCs and conduits are hallmarks of secondary lymphoid organs and of well-developed TLTs, in both mice and humans, and are likely to act as important scaffold and organizer cells of the T-cell-rich zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell suspensions of a human mammary carcinoma cellline (BT 20), wh en injected subcutaneously into nude athymie mice (BALB/c NujNu), produced tumor nodules at the injection site. Subsequent seriai transM plantations also gave rise to neoplastic nodules after latency periods averaging 3 weeks. The nodules displayed morphologie and functional characteristics comparable to those of the original tumor cells. Metastases, however, were not observed in any of the tumor-bearing mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid production of IL-4 by Leishmania homolog of mammalian RACK1 (LACK)-reactive CD4(+) T cells expressing the V beta 4-V alpha 8 TCR chains has been shown to drive aberrant Th2 cell development and susceptibility to Leishmania major in BALB/c mice. In contrast, mice from resistant strains fail to express this early IL-4 response. However, administration of either anti-IL-12 or -IFN-gamma at the initiation of infection allows the expression of this early IL-4 response in resistant mice. In this work we show that Leishmania homolog of mammalian RACK1-reactive CD4(+) T cells also expressing the V beta 4-V alpha 8 TCR chains are the source of the early IL-4 response to L. major in resistant mice given anti-IL-12 or -IFN-gamma Abs only at the onset of infection. Strikingly, these cells were found to be required for the reversal of the natural resistance of C57BL/6 mice following a single administration of anti-IL-12 or -IFN-gamma Abs. Together these results suggest that a deficiency in mechanisms capable of down-regulating the early IL-4 response to L. major contributes to the exquisite susceptibility of BALB/c mice to L. major.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Infection with Helicobacter induces a T helper type 1 response in mice and humans. Mice can be cured or protected from infection with Helicobacter by mucosal immunization with recombinant H. pylori urease B subunit (rUreB). This study characterizes the immune response of infected mice immunized with rUreB. METHODS: BALB/c mice were infected with H. felis. Two weeks later, they were orally immunized four times with rUreB and cholera toxin (CT) at weekly intervals. Controls were only infected or sham-immunized with CT. Animals were killed at various times after immunization. Splenic CD4(+) cells were obtained and cultured in vitro with rUreB to evaluate antigen-specific proliferation and induction of interferon gamma and interleukin 4 secretion. RESULTS: All rUreB-immunized mice (n = 8) were cured from infection 3 weeks after the fourth immunization. Immunization induced a proliferative response of splenic CD4(+) cells, a progressive decrease in interferon gamma secretion, and a concomitant increase in interleukin 4 secretion after each immunization. A simultaneous increase in rUreB specific serum immunoglobulin G1 levels was observed in infected/immunized mice. CONCLUSIONS: In BALB/c mice, therapeutic mucosal immunization with rUreB induces progressively a Th2 CD4(+) T cell response resulting in the elimination of the pathogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within 1 day of infection with Leishmania major, susceptible BALB/c mice produce a burst of IL-4 in their draining lymph nodes, resulting in a state of unresponsiveness to IL-12 in parasite-specific CD4+ T cells within 48 h. In this report we examined the molecular mechanism underlying this IL-12 unresponsiveness. Extinction of IL-12 signaling in BALB/c mice is due to a rapid down-regulation of IL-12R beta2-chain mRNA expression in CD4+ T cells. In contrast, IL-12R beta2-chain mRNA expression was maintained on CD4+ T cells from resistant C57BL/6 mice. The down-regulation of the IL-12R beta2-chain mRNA expression in BALB/c CD4+ T cells is a consequence of the early IL-4 production. In this murine model of infection, a strict correlation is shown in vivo between expression of the IL-12R beta2-chain in CD4+ T cells and the development of a Th1 response and down-regulation of the mRNA beta2-chain expression and the maturation of a Th2 response. Treatment of BALB/c mice with IFN-gamma, even when IL-4 has been produced for 48 h, resulted in maintenance of IL-12R beta2-chain mRNA expression and IL-12 responsiveness. The data presented here support the hypothesis that the genetically determined susceptibility of BALB/c mice to infection with L. major is primarily based on an up-regulation of IL-4 production, which secondarily induces extinction of IL-12 signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mu- (MOR) and kappa- (KOR) opioid receptors have been implicated in the regulation of homeostasis of non-neuronal cells, such as keratinocytes, and sensations like pain and chronic pruritus. Therefore, we have studied the phenotype of skin after deletion of MOR and KOR. In addition, we applied a dry skin model in these knockout mice and compared the different mice before and after induction of the dermatitis in terms of epidermal thickness, epidermal peripheral nerve ending distribution, dermal inflammatory infiltrate (mast cells, CD4 positive lymphocytes), and scratching behavior. MOR knockout mice reveal as phenotype a significantly thinner epidermis and a higher density of epidermal fiber staining by protein gene product 9.5 than the wild-type counterparts. Epidermal hypertrophy, induced by the dry skin dermatitis, was significantly less developed in MOR knockout than in wild-type mice. Neither mast cells nor CD4 T(h)-lymphocytes are involved in the changes of epidermal nerve endings and epidermal homeostasis. Finally, behavior experiments revealed that MOR and KOR knockout mice scratch less after induction of dry skin dermatitis than wild-type mice. These results indicate that MOR and KOR are important in skin homeostasis, epidermal nerve fiber regulation, and pathophysiology of itching.