959 resultados para Impedance analysis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper compares the performance of the complex nonlinear least squares algorithm implemented in the LEVM/LEVMW software with the performance of a genetic algorithm in the characterization of an electrical impedance of known topology. The effect of the number of measured frequency points and of measurement uncertainty on the estimation of circuit parameters is presented. The analysis is performed on the equivalent circuit impedance of a humidity sensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Impedance cardiography is an application of bioimpedance analysis primarily used in a research setting to determine cardiac output. It is a non invasive technique that measures the change in the impedance of the thorax which is attributed to the ejection of a volume of blood from the heart. The cardiac output is calculated from the measured impedance using the parallel conductor theory and a constant value for the resistivity of blood. However, the resistivity of blood has been shown to be velocity dependent due to changes in the orientation of red blood cells induced by changing shear forces during flow. The overall goal of this thesis was to study the effect that flow deviations have on the electrical impedance of blood, both experimentally and theoretically, and to apply the results to a clinical setting. The resistivity of stationary blood is isotropic as the red blood cells are randomly orientated due to Brownian motion. In the case of blood flowing through rigid tubes, the resistivity is anisotropic due to the biconcave discoidal shape and orientation of the cells. The generation of shear forces across the width of the tube during flow causes the cells to align with the minimal cross sectional area facing the direction of flow. This is in order to minimise the shear stress experienced by the cells. This in turn results in a larger cross sectional area of plasma and a reduction in the resistivity of the blood as the flow increases. Understanding the contribution of this effect on the thoracic impedance change is a vital step in achieving clinical acceptance of impedance cardiography. Published literature investigates the resistivity variations for constant blood flow. In this case, the shear forces are constant and the impedance remains constant during flow at a magnitude which is less than that for stationary blood. The research presented in this thesis, however, investigates the variations in resistivity of blood during pulsataile flow through rigid tubes and the relationship between impedance, velocity and acceleration. Using rigid tubes isolates the impedance change to variations associated with changes in cell orientation only. The implications of red blood cell orientation changes for clinical impedance cardiography were also explored. This was achieved through measurement and analysis of the experimental impedance of pulsatile blood flowing through rigid tubes in a mock circulatory system. A novel theoretical model including cell orientation dynamics was developed for the impedance of pulsatile blood through rigid tubes. The impedance of flowing blood was theoretically calculated using analytical methods for flow through straight tubes and the numerical Lattice Boltzmann method for flow through complex geometries such as aortic valve stenosis. The result of the analytical theoretical model was compared to the experimental impedance measurements through rigid tubes. The impedance calculated for flow through a stenosis using the Lattice Boltzmann method provides results for comparison with impedance cardiography measurements collected as part of a pilot clinical trial to assess the suitability of using bioimpedance techniques to assess the presence of aortic stenosis. The experimental and theoretical impedance of blood was shown to inversely follow the blood velocity during pulsatile flow with a correlation of -0.72 and -0.74 respectively. The results for both the experimental and theoretical investigations demonstrate that the acceleration of the blood is an important factor in determining the impedance, in addition to the velocity. During acceleration, the relationship between impedance and velocity is linear (r2 = 0.98, experimental and r2 = 0.94, theoretical). The relationship between the impedance and velocity during the deceleration phase is characterised by a time decay constant, ô , ranging from 10 to 50 s. The high level of agreement between the experimental and theoretically modelled impedance demonstrates the accuracy of the model developed here. An increase in the haematocrit of the blood resulted in an increase in the magnitude of the impedance change due to changes in the orientation of red blood cells. The time decay constant was shown to decrease linearly with the haematocrit for both experimental and theoretical results, although the slope of this decrease was larger in the experimental case. The radius of the tube influences the experimental and theoretical impedance given the same velocity of flow. However, when the velocity was divided by the radius of the tube (labelled the reduced average velocity) the impedance response was the same for two experimental tubes with equivalent reduced average velocity but with different radii. The temperature of the blood was also shown to affect the impedance with the impedance decreasing as the temperature increased. These results are the first published for the impedance of pulsatile blood. The experimental impedance change measured orthogonal to the direction of flow is in the opposite direction to that measured in the direction of flow. These results indicate that the impedance of blood flowing through rigid cylindrical tubes is axisymmetric along the radius. This has not previously been verified experimentally. Time frequency analysis of the experimental results demonstrated that the measured impedance contains the same frequency components occuring at the same time point in the cycle as the velocity signal contains. This suggests that the impedance contains many of the fluctuations of the velocity signal. Application of a theoretical steady flow model to pulsatile flow presented here has verified that the steady flow model is not adequate in calculating the impedance of pulsatile blood flow. The success of the new theoretical model over the steady flow model demonstrates that the velocity profile is important in determining the impedance of pulsatile blood. The clinical application of the impedance of blood flow through a stenosis was theoretically modelled using the Lattice Boltzman method (LBM) for fluid flow through complex geometeries. The impedance of blood exiting a narrow orifice was calculated for varying degrees of stenosis. Clincial impedance cardiography measurements were also recorded for both aortic valvular stenosis patients (n = 4) and control subjects (n = 4) with structurally normal hearts. This pilot trial was used to corroborate the results of the LBM. Results from both investigations showed that the decay time constant for impedance has potential in the assessment of aortic valve stenosis. In the theoretically modelled case (LBM results), the decay time constant increased with an increase in the degree of stenosis. The clinical results also showed a statistically significant difference in time decay constant between control and test subjects (P = 0.03). The time decay constant calculated for test subjects (ô = 180 - 250 s) is consistently larger than that determined for control subjects (ô = 50 - 130 s). This difference is thought to be due to difference in the orientation response of the cells as blood flows through the stenosis. Such a non-invasive technique using the time decay constant for screening of aortic stenosis provides additional information to that currently given by impedance cardiography techniques and improves the value of the device to practitioners. However, the results still need to be verified in a larger study. While impedance cardiography has not been widely adopted clinically, it is research such as this that will enable future acceptance of the method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Electrical impedance tomography (EIT) has been shown to be able to distinguish both ventilation and perfusion. With adequate filtering the regional distributions of both ventilation and perfusion and their relationships could be analysed. Several methods of separation have been suggested previously, including breath holding, electrocardiograph (ECG) gating and frequency filtering. Many of these methods require interventions inappropriate in a clinical setting. This study therefore aims to extend a previously reported frequency filtering technique to a spontaneously breathing cohort and assess the regional distributions of ventilation and perfusion and their relationship. Methods Ten healthy adults were measured during a breath hold and while spontaneously breathing in supine, prone, left and right lateral positions. EIT data were analysed with and without filtering at the respiratory and heart rate. Profiles of ventilation, perfusion and ventilation/perfusion related impedance change were generated and regions of ventilation and pulmonary perfusion were identified and compared. Results Analysis of the filtration technique demonstrated its ability to separate the ventilation and cardiac related impedance signals without negative impact. It was, therefore, deemed suitable for use in this spontaneously breathing cohort. Regional distributions of ventilation, perfusion and the combined ΔZV/ΔZQ were calculated along the gravity axis and anatomically in each position. Along the gravity axis, gravity dependence was seen only in the lateral positions in ventilation distribution, with the dependent lung being better ventilated regardless of position. This gravity dependence was not seen in perfusion. When looking anatomically, differences were only apparent in the lateral positions. The lateral position ventilation distributions showed a difference in the left lung, with the right lung maintaining a similar distribution in both lateral positions. This is likely caused by more pronounced anatomical changes in the left lung when changing positions. Conclusions The modified filtration technique was demonstrated to be effective in separating the ventilation and perfusion signals in spontaneously breathing subjects. Gravity dependence was seen only in ventilation distribution in the left lung in lateral positions, suggesting gravity based shifts in anatomical structures. Gravity dependence was not seen in any perfusion distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High power piezoelectric ultrasonic transducers have been widely exploited in a variety of applications. The critical behaviour of a piezoelectric device is encapsulated in its resonant frequencies because of its maximum transmission performance at these frequencies. Therefore power electronic converters should be tuned at those resonant frequencies to transfer electrical power to mechanical power efficiently. However, structural and environmental changes cause variations in the device resonant frequencies which can degrade the system performance. Hence, estimating the device resonant frequencies within the incorporated setup can significantly improve the system performance. This paper proposes an efficient resonant frequency estimation approach to maintain the performance of high power ultrasonic applications using the employed power converter. Experimental validations indicate the effectiveness of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple equivalent circuit model for the analysis of dispersion and interaction impedance characteristics of serpentine folded-waveguide slow-wave structure was developed by considering the straight and curved portions of structure supporting the dominant TE10-mode of the rectangular waveguide. Expressions for the lumped capacitance and inductance per period of the slow-wave structure were derived in terms of the physical dimensions of the structure, incorporating the effects of the beam-hole in the lumped parameters. The lumped parameters were subsequently interpreted for obtaining the dispersion and interaction impedance characteristics of the structure. The analysis was simple yet accurate in predicting the dispersion and interaction impedance behaviour at millimeter-wave frequencies. The analysis was benchmarked against measurement as well as with 3D electromagnetic modeling using MAFIA for two typical slow-wave structures (one at the Ka-band and the other at the W-band) and close agreement observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analysis of rectangular folded-waveguide slow-wave structure was developed using conformal mapping technique through Schwarz's polygon transformation and closed form expressions for the lumped capacitance and inductance per period of the slow-wave structure were derived in terms of the physical dimensions of the structure, incorporating the effects of the beam hole in the lumped parameters. The lumped parameters were subsequently interpreted for obtaining the dispersion and interaction impedance characteristics of the structure. The analysis was benchmarked for two typical millimeter-wave structures, one operating in Ka-band and the other operating in Q-band, against measurement and 3D electromagnetic modeling using MAFIA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper present a spectral iteration technique for the analysis of linear arrays of unequally spaced dipoles of unequal lengths. As an example, the Yagi-Uda array is considered for illustration. Analysis is carried out in both the spatial as well as the spectral domains, the two being linked by the Fourier transform. The fast Fourier transform algorithm is employed to obtain an iterative solution to the electric field integral equation and the need for matrix inversion is circumvented. This technique also provides a convenient means for testing the satisfaction of the boundary conditions on the array elements. Numerical comparison of the input impedance and radiation pattern have been made with results deduced elsewhere by other methods. The computational efficency of this technique has been found to be significant for large arrays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decay of sound in a rectangular room is analyzed for various boundary conditions on one of its walls. It is shown that the decay of the sound-intensity level is in general nonlinear. But for specific areas and impedances of the material it is possible to obtain a linear initial decay. It is also shown that the coefficients derived from the initial decay rates neither correspond to the predictions of Sabine's or Eyring's geometrical theories nor to the normal coefficients of Morse's wave theory. The dependence of the coefficients on the area of the material is discussed. The influence of the real and the imaginary parts of the specific acoustic impedance of the material on the coefficients is also discussed. Finally, the existence of a linear initial decay corresponding to the decay of a diffuse field in the case of a highly absorbing material partially covering a wall is explained on the basis of modal coupling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decay of sound in a rectangular room is analyzed for various boundary conditions on one of its walls. It is shown that the decay of the sound-intensity level is in general nonlinear. But for specific areas and impedances of the material it is possible to obtain a linear initial decay. It is also shown that the coefficients derived from the initial decay rates neither correspond to the predictions of Sabine's or Eyring's geometrical theories nor to the normal coefficients of Morse's wave theory. The dependence of the coefficients on the area of the material is discussed. The influence of the real and the imaginary parts of the specific acoustic impedance of the material on the coefficients is also discussed. Finally, the existence of a linear initial decay corresponding to the decay of a diffuse field in the case of a highly absorbing material partially covering a wall is explained on the basis of modal coupling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the experimental evaluation of the acoustical impedance of a termination by the impedance-tube method at low frequencies, the length of the impedance tube is a problem. In the present paper, the method of exact analysis of standing waves developed by the authors for the stationary medium as well as for mean flow, has been extended for measurement of the acoustical impedance of a termination at low frequencies. The values of the tube attenuation factor and the wave number at the low frequency of interest are established from the experiment conducted, with the given impedance tube, at a higher frequency. Then, exciting the tube at the desired low frequency it is sufficient to measure sound pressure at three differenct locations (not necessarily the minima) in order to evaluate reflection coefficient and hence the impedance of the termination at that frequency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical investigation of the transverse shear wave mode tuning with a resonator mass (packing mass) on a Lead Zirconium Titanate (PZT) crystal bonded together with a host plate and its equivalent electric circuit parameters are presented. The energy transfer into the structure for this type of wave modes are much higher in this new design. The novelty of the approach here is the tuning of a single wave mode in the thickness direction using a resonator mass. First, a one-dimensional constitutive model assuming the strain induced only in the thickness direction is considered. As the input voltage is applied to the PZT crystal in the thickness direction, the transverse normal stress distribution induced into the plate is assumed to have parabolic distribution, which is presumed as a function of the geometries of the PZT crystal, packing mass, substrate and the wave penetration depth of the generated wave. For the PZT crystal, the harmonic wave guide solution is assumed for the mechanical displacement and electric fields, while for the packing mass, the former is solved using the boundary conditions. The electromechanical characteristics in terms of the stress transfer, mechanical impedance, electrical displacement, velocity and electric field are analyzed. The analytical solutions for the aforementioned entities are presented on the basis of varying the thickness of the PZT crystal and the packing mass. The results show that for a 25% increase in the thickness of the PZT crystal, there is ~38% decrease in the first resonant frequency, while for the same change in the thickness of the packing mass, the decrease in the resonant frequency is observed as ~35%. Most importantly the tuning of the generated wave can be accomplished with the packing mass at lower frequencies easily. To the end, an equivalent electric circuit, for tuning the transverse shear wave mode is analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An E-plane serpentine folded-waveguide slow-wave structure with ridge loading on one of its broad walls is proposed for broadband traveling-wave tubes (TWTs) and studied using a simple quasi-transverse-electromagnetic analysis for the dispersion and interaction impedance characteristics, including the effects of the beam-hole discontinuity. The results are validated against cold test measurements, an approximate transmission-line parametric analysis, an equivalent circuit analysis, and 3-D electromagnetic modeling using CST Microwave Studio. The effect of the structure parameters on widening the bandwidth of a TWT is also studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new approach to the location of fault in the high voltage power transmission system using Support Vector Machines (SVMs). A knowledge base is developed using transient stability studies for apparent impedance swing trajectory in the R-X plane. SVM technique is applied to identify the fault location in the system. Results are presented on sample 3-power station, a 9-bus system illustrate the implementation of the proposed method.