973 resultados para Identification parameters
Resumo:
The intertidal and subtidal soft bottom macro- and meiofauna of a glacier fjord on Spitsbergen was studied after complete ice melt in June 2003. The abundances of the benthic fauna were within the range reported from estuaries and similar intertidal areas of boreal regions. The high proportion of juveniles in the eulittoral zone indicated larval recruitment from subtidal areas. The macrobenthic fauna can be divided into an intertidal and a subtidal community, both being numerically dominated by annelids. Deposit feeders were numerically predominant in intertidal sites, whereas suspension feeders were most abundant in the subtidal area. Among the meiofauna, only the benthic copepods were identified to species, revealing ecological adaptations typical for intertidal species elsewhere.
Resumo:
A Near Infrared Spectroscopy (NIRS) industrial application was developed by the LPF-Tagralia team, and transferred to a Spanish dehydrator company (Agrotécnica Extremeña S.L.) for the classification of dehydrator onion bulbs for breeding purposes. The automated operation of the system has allowed the classification of more than one million onion bulbs during seasons 2004 to 2008 (Table 1). The performance achieved by the original model (R2=0,65; SEC=2,28ºBrix) was enough for qualitative classification thanks to the broad range of variation of the initial population (18ºBrix). Nevertheless, a reduction of the classification performance of the model has been observed with the passing of seasons. One of the reasons put forward is the reduction of the range of variation that naturally occurs during a breeding process, the other is the variations in other parameters than the variable of interest but whose effects would probably be affecting the measurements [1]. This study points to the application of Independent Component Analysis (ICA) on this highly variable dataset coming from a NIRS industrial application for the identification of the different sources of variation present through seasons.
Resumo:
This paper presents a time-domain stochastic system identification method based on maximum likelihood estimation (MLE) with the expectation maximization (EM) algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. The benchmark structure is a four-story, two-bay by two-bay steel-frame scale model structure built in the Earthquake Engineering Research Laboratory at the University of British Columbia, Canada. This paper focuses on Phase I of the analytical benchmark studies. A MATLAB-based finite element analysis code obtained from the IASC-ASCE SHM Task Group web site is used to calculate the dynamic response of the prototype structure. A number of 100 simulations have been made using this MATLAB-based finite element analysis code in order to evaluate the proposed identification method. There are several techniques to realize system identification. In this work, stochastic subspace identification (SSI)method has been used for comparison. SSI identification method is a well known method and computes accurate estimates of the modal parameters. The principles of the SSI identification method has been introduced in the paper and next the proposed MLE with EM algorithm has been explained in detail. The advantages of the proposed structural identification method can be summarized as follows: (i) the method is based on maximum likelihood, that implies minimum variance estimates; (ii) EM is a computational simpler estimation procedure than other optimization algorithms; (iii) estimate more parameters than SSI, and these estimates are accurate. On the contrary, the main disadvantages of the method are: (i) EM algorithm is an iterative procedure and it consumes time until convergence is reached; and (ii) this method needs starting values for the parameters. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using both the SSI method and the proposed MLE + EM method. The numerical results show that the proposed method identifies eigenfrequencies, damping ratios and mode shapes reasonably well even in the presence of 10% measurement noises. These modal parameters are more accurate than the SSI estimated modal parameters.
Resumo:
System identification deals with the problem of building mathematical models of dynamical systems based on observed data from the system" [1]. In the context of civil engineering, the system refers to a large scale structure such as a building, bridge, or an offshore structure, and identification mostly involves the determination of modal parameters (the natural frequencies, damping ratios, and mode shapes). This paper presents some modal identification results obtained using a state-of-the-art time domain system identification method (data-driven stochastic subspace algorithms [2]) applied to the output-only data measured in a steel arch bridge. First, a three dimensional finite element model was developed for the numerical analysis of the structure using ANSYS. Modal analysis was carried out and modal parameters were extracted in the frequency range of interest, 0-10 Hz. The results obtained from the finite element modal analysis were used to determine the location of the sensors. After that, ambient vibration tests were conducted during April 23-24, 2009. The response of the structure was measured using eight accelerometers. Two stations of three sensors were formed (triaxial stations). These sensors were held stationary for reference during the test. The two remaining sensors were placed at the different measurement points along the bridge deck, in which only vertical and transversal measurements were conducted (biaxial stations). Point estimate and interval estimate have been carried out in the state space model using these ambient vibration measurements. In the case of parametric models (like state space), the dynamic behaviour of a system is described using mathematical models. Then, mathematical relationships can be established between modal parameters and estimated point parameters (thus, it is common to use experimental modal analysis as a synonym for system identification). Stable modal parameters are found using a stabilization diagram. Furthermore, this paper proposes a method for assessing the precision of estimates of the parameters of state-space models (confidence interval). This approach employs the nonparametric bootstrap procedure [3] and is applied to subspace parameter estimation algorithm. Using bootstrap results, a plot similar to a stabilization diagram is developed. These graphics differentiate system modes from spurious noise modes for a given order system. Additionally, using the modal assurance criterion, the experimental modes obtained have been compared with those evaluated from a finite element analysis. A quite good agreement between numerical and experimental results is observed.
Resumo:
We study a cognitive radio scenario in which the network of sec- ondary users wishes to identify which primary user, if any, is trans- mitting. To achieve this, the nodes will rely on some form of location information. In our previous work we proposed two fully distributed algorithms for this task, with and without a pre-detection step, using propagation parameters as the only source of location information. In a real distributed deployment, each node must estimate its own po- sition and/or propagation parameters. Hence, in this work we study the effect of uncertainty, or error in these estimates on the proposed distributed identification algorithms. We show that the pre-detection step significantly increases robustness against uncertainty in nodes' locations.
Resumo:
A reliability analysis method is proposed that starts with the identification of all variables involved. These are divided in three groups: (a) variables fixed by codes, as loads and strength project values, and their corresponding partial safety coefficients, (b) geometric variables defining the dimension of the main elements involved, (c) the cost variables, including the possible damages caused by failure, (d) the random variables as loads, strength, etc., and (e)the variables defining the statistical model, as the family of distribution and its corresponding parameters. Once the variables are known, the II-theorem is used to obtain a minimum equivalent set of non-dimensional variables, which is used to define the limit states. This allows a reduction in the number of variables involved and a better understanding of their coupling effects. Two minimum cost criteria are used for selecting the project dimensions. One is based on a bounded-probability of failure, and the other on a total cost, including the damages of the possible failure. Finally, the method is illustrated by means of an application.
Resumo:
The application of the Electro-Mechanical Impedance (EMI) method for damage detection in Structural Health Monitoring has noticeable increased in recent years. EMI method utilizes piezoelectric transducers for directly measuring the mechanical properties of the host structure, obtaining the so called impedance measurement, highly influenced by the variations of dynamic parameters of the structure. These measurements usually contain a large number of frequency points, as well as a high number of dimensions, since each frequency range swept can be considered as an independent variable. That makes this kind of data hard to handle, increasing the computational costs and being substantially time-consuming. In that sense, the Principal Component Analysis (PCA)-based data compression has been employed in this work, in order to enhance the analysis capability of the raw data. Furthermore, a Support Vector Machine (SVM), which has been widespread used in machine learning and pattern recognition fields, has been applied in this study in order to model any possible existing pattern in the PCAcompress data, using for that just the first two Principal Components. Different known non-damaged and damaged measurements of an experimental tested beam were used as training input data for the SVM algorithm, using as test input data the same amount of cases measured in beams with unknown structural health conditions. Thus, the purpose of this work is to demonstrate how, with a few impedance measurements of a beam as raw data, its healthy status can be determined based on pattern recognition procedures.
Resumo:
Evolutionary algorithms are suitable to solve damage identification problems in a multiobjective context. However, the performance of these methods can deteriorate quickly with increasing noise intensities originating numerous uncertainties. In this paper, a statistic structural damage detection method formulated in a multiobjective context is proposed. The statistic analysis is implemented to take into account the uncertainties existing in the structural model and measured structural modal parameters. The presented method is verified by a number of simulated damage scenarios. The effects of noise and damage levels on damage detection are investigated.
Resumo:
Sulfite oxidase catalyzes the terminal reaction in the degradation of sulfur amino acids. Genetic deficiency of sulfite oxidase results in neurological abnormalities and often leads to death at an early age. The mutation in the sulfite oxidase gene responsible for sulfite oxidase deficiency in a 5-year-old girl was identified by sequence analysis of cDNA obtained from fibroblast mRNA to be a guanine to adenine transition at nucleotide 479 resulting in the amino acid substitution of Arg-160 to Gln. Recombinant protein containing the R160Q mutation was expressed in Escherichia coli, purified, and characterized. The mutant protein contained its full complement of molybdenum and heme, but exhibited 2% of native activity under standard assay conditions. Absorption spectroscopy of the isolated molybdenum domains of native sulfite oxidase and of the R160Q mutant showed significant differences in the 480- and 350-nm absorption bands, suggestive of altered geometry at the molybdenum center. Kinetic analysis of the R160Q protein showed an increase in Km for sulfite combined with a decrease in kcat resulting in a decrease of nearly 1,000-fold in the apparent second-order rate constant kcat/Km. Kinetic parameters for the in vitro generated R160K mutant were found to be intermediate in value between those of the native protein and the R160Q mutant. Native sulfite oxidase was rapidly inactivated by phenylglyoxal, yielding a modified protein with kinetic parameters mimicking those of the R160Q mutant. It is proposed that Arg-160 attracts the anionic substrate sulfite to the binding site near the molybdenum.
Resumo:
Two CO-isotope sensitive lines have been detected in the overtone region of the resonance Raman spectra of CO-bound hemeproteins. One line is assigned as the overtone of the Fe-CO stretching mode and is located in the 1000- to 1070-cm-1 region. The other line is found in the 1180- to 1210-cm-1 region and is assigned as a combination between a porphyrin mode, nu 7, and the Fe-CO stretching mode. The high intensities of these lines, which in the terminal oxidase class of proteins are of the same order as those of the fundamental stretching mode, indicate that the mechanism of enhancement for modes involving the Fe-CO moiety is different from that for the modes of the porphyrin macrocycle and call for reexamination of Raman theory of porphyrins as applied to axial ligands. The anharmonicity of the electronic potential function was evaluated, revealing that in the terminal oxidases the anharmonicity is greater than in the other heme proteins that were examined, suggesting a distinctive interaction of the bound CO with its distal environment in this family. Furthermore, the anharmonicity correlates with the frequency of the C-O stretching mode, demonstrating that both of these parameters are sensitive to the Fe-CO bond energy. The overtone and combination lines involving the bound CO promise to be additional probes of heme protein structural properties.
Resumo:
In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chrétien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight satellites were identical buses to determine if identical buses could be correctly differentiated. When Stokes parameters were plotted against time and solar phase angle, the data indicates that there were distinguishing features in S0 (total intensity) and S1 (linear polarization) that may lead to positive identification or classification of each satellite.