981 resultados para IRRADIATED POLYAMIDE-1010
Resumo:
The crystallization behavior and morphology of nonreactive and reactive melt-mixed blends of polypropylene (PP) and polyamide (PA12; as the dispersed phase) were investigated. It Was found that the crystallization behavior and the size of the PA12 particles were dependent on the content of the compatibilizer (maleic anhydride-modified polypropylene) because an in situ reaction occurred between the maleic anhydride groups of the compatibilizer and the amide end groups of PA12. When the amount of compatibilizer was more than 4%, the PA12 did not crystallize at temperatures typical for bulk crystallization. These finely dispersed PA12 particles crystallized co-incidently with the 1313 phase. The changes in domain size with compatibilizer content were consistent with Wu's theory. These investigations showed that crystallization of the dispersed phase Could not be explained solely by the size of the dispersion. The interfacial tension between the polymeric components in the blends may yield information on the fractionation of crystallization.
Resumo:
The crystalline-phase transition in polyamide-66/montmorillonite nanocomposites before melting was investigated by in situ X-ray diffraction and is reported for the first time in this work. The phase-transition temperature in the nanocomposites was 170 degreesC, 20 degreesC lower than that in polyamide-66. The lower phase-transition temperature of the nanocomposites could be attributed to the gamma-phase-favorable environment caused by silicate layers. Meanwhile, the addition of silicate layers changed the crystal structure of the polyamide-66 matrix and influenced the phase-transition behavior.
Resumo:
Blends of polyamide-6 (PA6) with syndiotactic polystyrene (sPS) were prepared using a series of styrene/glycidyl methacrylate (SG) copolymers as compatibilizers. These copolymers are miscible with sPS, and the epoxide units in SG are capable of reacting with PA6 end groups. These copolymers thus have the potential to form SG-g-PA6 graft copolymers at the PA6/sPS interface during melt processing. This study focuses on the effects of functionality and concentration of the compatibilizer on the morphological, mechanical and crystallization behaviors of the blends.. In general, SG copolymers are effective in reducing the sPS domain size and improving the interfacial adhesion. About 5 wt% glycidyl methacrylate (GMA) is the optimum content in SG copolymer that produces the best compatibilization. Both the strength and modulus of the blend have been improved on addition of the SG copolymers, accompanying a loss in toughness when higher concentration copolymer is added. Incorporation of SG compatibilizers to PA6/sPS blend has little influence on the crystallization behavior of PA6 component but resulted in a steady reduction in intensity of crystallinity peak of sPS and simultaneous crystallization of sPS with PA6 is observed.
Resumo:
Reactive compatibilization of ethylene-propylene copolymer functionalized with allyl (3-isocyanato-4-tolyl) carbamate (TAI) isocyanate (EPM-g-TAI) and polyamide 6 (PA6) was investigated in this paper, FTIR analysis revealed the evidence of a chemical reaction between the end groups of PA6 and EPM-g-TAI. Thermal, rheological, morphological, and mechanical properties of the resultant system were examined, DSC analysis indicated that the crystallization of PA6 in Pa6/EPM-g-TAI blends was inhibited, due to the chemical reaction that occurs at the interface of PA6 and EPM-g-TAI. Rheological measurement showed that complex viscosity and storage modulus of PA6/EPM-g-TAI were both dramatically enhanced compared to those of PA6/EPM at the same blending composition. After examining the morphology of both blending systems, smaller particile sizes, more homogeneous distribution of domains and improved interfacial adhesion between matrix and domains were observed in the compatibilized system. Mechanical properties such as tensile strength. Young's modulus, flexural strength and modulus, as well as notched and un-notched impact strength of PA6/EPM-g-TAI blends were also found to improve gradually with increasing the content of grafted TAI.
Resumo:
Full Paper: A study has been made on the annealing of nylon-1010 under high pressures. Heat treatment of melt-crystallized nylon-1010 was performed at 250degreesC for 30 min in the pressure range 0.7 similar to 2.5 GPa. It was found that the triclinic crystals of virgin nylon-1010 were retained at pressures less than 1.0 GPa or larger than 1.2 GPa. The X-ray diffraction intensity of (100) planes decreased with increasing pressure. The diffraction peaks shifted slightly to higher angles (2theta) relative to the virgin nylon-1010, indicating dense packing of polymer chains at high pressures. The highest melting temperature was 208degreesC for the sample annealed at 1.5 GPa. No extended-chain crystals were formed under the experimental conditions. Crosslinking occurred in the pressure range 1.0 similar to 1.2 GPa. The structure of the crosslinked samples was characterized by means of infrared spectroscopy and X-ray photoelectron spectroscopy. It is concluded that a mechanism of crosslinking via carbodiimide can explain the nature of crosslinking of nylon-1010 annealed at high pressures. The remarkable changes of the structure of annealed nylon-1010 are also discussed in this article.
Resumo:
研究了尼龙(PA)1010在250℃、不同压力下退火30 min后凝聚态结构的变化。结果表明,在压力小于1.0 GPa和大于1.2 GPa的范围内,PA1010室温结晶的三斜晶系的晶体结构没有变化,但是(100)晶面的衍射强度随压力的增加而减弱,而(110/010)晶面的衍射强度增加;当压力在1.0~1.2 GPa时,PA1010的X射线衍射图谱没有明显的衍射峰,DSC和溶解实验证实,PA1010在该压力范围内发生了交联,并进一步讨论了PA1010在高压下发生交联的机理。
Resumo:
The temperature dependence of the resistivity of KrF laser irradiated polyimide films was studied. In all cases, the resistivity decreased with increasing temperature. The irradiated polyimide film exhibited a typical semiconducting property. This result indicated that the irradiated polyimide films can be used as temperature-sensitive materials. We demonstrated that both the sensitivity and the sensitive temperature range of the irradiated polyimide films can be altered by adjusting laser irradiation parameters. The intrinsic relationship between the temperature coefficient of the resistivity and irradiation condition was interpreted in terms of the microstructural change. The result provided a new insight into the fundamental aspects of laser irradiated polyimide film structure and a method of preparing temperature-sensitive materials. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Conducting layers on KrF excimer-laser-irradiated polyimide film surfaces were investigated by XPS, SEM and Fourier transform infrared (FTIR)-Raman spectroscopy, Analysis of polyimide residue after laser irradiation provided valuable insight into the nature of the formation of conducting layers. The subtle different between KrF laser irradiation and the pyrolysis of polyimide was found by comparison of the formation process of conducting layers. A physical picture was presented to describe better the formation of conducting layers. Under KrF laser irradiation, polyimide films underwent thermal decomposition assisted by photoinduced direct bond breaking. Polycrystalline graphite was subsequently formed as the product of the secondary addition reaction of carbon-enriched clusters, Such reaction was supported by the remaining energy on the irradiated polyimide film surface. This result shows that the thermal process played an important role that was not just restricted to the formation of conducting layers, Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
Polyamide (PA)1010 is blended with a saturated polyolefin elastomer, ethylene-cu-olefin copolymer (EOCP). To improve the compatibility of PA1010 with EOCP, different grafting rates of EOCP with maleic anhydride (MA) are used. The reaction between PA1010 and EOCP-g-MA during extrusion is verified through an extraction test. Mechanical properties, such as notched Izod impact strength, elongation at break, etc., are examined as a function of grafting rate and weight fraction of elastomer. It was found that in the scale of grafting rate (0.13-0.92 wt %), 0.51 wt % is an extreme point for several mechanical properties. Elastomer domains of PA1010/ EOCP-g-MA blends show a finer and more uniform dispersion in the matrix than that of PA1010/EOCP blends. For the same grafting rate, the average sizes of elastomer particles are almost independent on the contents of elastomer, but for different grafting rates, the particle sizes are decreased with increasing grafting rate. The copolymer formed during extrusion strengthens the interfacial adhesion and acts as an emulsifier to prevent the aggregation of elastomer in the process of blending. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Polyaniline (PANI), a member of the intrinsically conducting polymer (ICPs) family, was blended with polyamide-11 (polyco-aminoundecanoyle) in concentrated sulfuric acid. The above solution was used to spin conductive PANI/polyamide-11 fibers by wet-spinning technology. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to study the two-phase morphology of the conductive PANI/polyamide-11 fibers. The micrographs of the cross-section, the axial section and the surface of the monofilament demonstrated that the two blend components were incompatible. The morphology of PANI in the fibers was of fibrillar form, which was valuable for producing conducting channels. The electrical conductivity of the fibers was from 10(-6) to 10(-1) S/cm with the different PANI fraction and the percolation threshold was about 5 wt.%. By comparing the two blend systems of PANI/Polyamide-11 fibers and carbon black filled poly(ethylene terephthalate) (PET) fibers, it was shown that the morphology of the conductive component had an influence on electrical conductivity, The former had higher conductivity and lower percolation threshold than the latter. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, blends of Nylon 6,6 with the liquid crystal polymer Vectra A950 are considered; specifically we focused our attention on Nylon 6,6 modifications by interchange reactions that can occur in the melt, as a function of mixing conditions and blend compositions. Two matrix samples have been used, characterised by a slightly different relative amount of amine and carboxylic end groups, being the latter predominant in both cases. The dried polymers Nylon 6,6/Vectra, combined in weight ratios between 95/5 and 50/50, were subjected to reactive blending with different methods (single-screw extruder, Brabender, pyrex reactor). Pure Nylon samples have been also investigated as reference materials. The soluble Nylon 6,6-rich fraction of each blend was separated from the insoluble Vectra-rich one and used for molecular and spectroscopic characterisations. Thermal and morphological analyses, as well as testing of tensile properties, were carried out on the blends. Evidences of the occurrence of interchange reactions are given and the most probable ones are suggested. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
研究了拉伸温度 T与拉伸速率 v对尼龙 10 10拉伸性能的影响。结果表明 ,随 T升高 ,弹性极限强度 σa、表观杨氏弹性模量 Ea、屈服强度 σy 和应变硬化强度 σt均降低 ;弹性极限伸长 εa 在约 5 0℃时有一极大值 ;当 T≥ 5 0℃时屈服应变 εy 与 T无关 ,而 T=18℃时的 εy低很多。随拉伸速率 v的加快 ,T=18℃、=5 0 mm/ min时 Ea 有一极大值 ;σa、εa、σy、σt和 T≥ 5 0℃后的 Ea 均基本不受 v的影响。
Resumo:
研究了拉伸取向尼龙 10 10的抗张回复现象 .残存应变ε′表征了由链滑移而产生的永久形变 ,回复应变(ε -ε′)表征了键角变化和链段取向产生的形变 .当拉伸温度T=18℃