998 resultados para IRON SULFIDE NANOSTRUCTURES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure Tungsten Oxide (WO3) and Iron-doped (10 at%) Tungsten Oxide (WO3:Fe) nanostructured thin films were prepared using a dual crucible Electron Beam Evaporation techniques. The films were deposited at room temperature in high vacuum condition on glass substrate and post-heat treated at 300 oC for 1 hour. From the study of X-ray diffraction and Raman the characteristics of the as-deposited WO3 and WO3:Fe films indicated non-crystalline nature. The surface roughness of all the films showed in the order of 2.5 nm as observed using Atomic Force Microscopy (AFM). X-Ray Photoelectron Spectroscopy (XPS) analysis revealed tungsten oxide films with stoichiometry close to WO3. The addition of Fe to WO3 produced a smaller particle size and lower porosity as observed using Transmission Electron Microscopy (TEM). A slight difference in optical band gap energies of 3.22 eV and 3.12 eV were found between the as-deposited WO3 and WO3:Fe films, respectively. However, the difference in the band gap energies of the annealed films were significantly higher having values of 3.12 eV and 2.61 eV for the WO3 and WO3:Fe films, respectively. The heat treated samples were investigated for gas sensing applications using noise spectroscopy and doping of Fe to WO3 reduced the sensitivity to certain gasses. Detailed study of the WO3 and WO3:Fe films gas sensing properties is the subject of another paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the findings of an investigation into the rate-limiting mechanism for the heterogeneous burning in oxygen under normal gravity and microgravity of cylindrical iron rods. The original objective of the work was to determine why the observed melting rate for burning 3.2-mm diameter iron rods is significantly higher in microgravity than in normal gravity. This work, however, also provided fundamental insight into the rate-limiting mechanism for heterogeneous burning. The paper includes a summary of normal-gravity and microgravity experimental results, heat transfer analysis and post-test microanalysis of quenched samples. These results are then used to show that heat transfer across the solid/liquid interface is the rate-limiting mechanism for melting and burning, limited by the interfacial surface area between the molten drop and solid rod. In normal gravity, the work improves the understanding of trends reported during standard flammability testing for metallic materials, such as variations in melting rates between test specimens with the same cross-sectional area but different crosssectional shape. The work also provides insight into the effects of configuration and orientation, leading to an improved application of standard test results in the design of oxygen system components. For microgravity applications, the work enables the development of improved methods for lower cost metallic material flammability testing programs. In these ways, the work provides fundamental insight into the heterogeneous burning process and contributes to improved fire safety for oxygen systems in applications involving both normal-gravity and microgravity environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of cylindrical iron rods burning in pressurised oxygen under microgravity conditions is presented. It has been shown that, under similar experimental conditions, the melting rate of a burning, cylindrical iron rod is higher in microgravity than in normal gravity by a factor of 1.8 ± 0.3. This paper presents microanalysis of quenched samples obtained in a microgravity environment in a 2.0 s duration drop tower facility in Brisbane, Australia. These images indicate that the solid/liquid interface is highly convex in reduced gravity, compared to the planar geometry typically observed in normal gravity, which increases the contact area between liquid and solid phases by a factor of 1.7 ± 0.1. Thus, there is good agreement between the proportional increase in solid/liquid interface surface area and melting rate in microgravity. This indicates that the cause of the increased melting rates for cylindrical iron rods burning in microgravity is altered interfacial geometry at the solid/liquid interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since its initial proposal in 1998, alkaline hydrothermal processing has rapidly become an established technology for the production of titanate nanostructures. This simple, highly reproducible process has gained a strong research following since its conception. However, complete understanding and elucidation of nanostructure phase and formation have not yet been achieved. Without fully understanding phase, formation, and other important competing effects of the synthesis parameters on the final structure, the maximum potential of these nanostructures cannot be obtained. Therefore this study examined the influence of synthesis parameters on the formation of titanate nanostructures produced by alkaline hydrothermal treatment. The parameters included alkaline concentration, hydrothermal temperature, the precursor material‘s crystallite size and also the phase of the titanium dioxide precursor (TiO2, or titania). The nanostructure‘s phase and morphology was analysed using X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy. X-ray photoelectron spectroscopy (XPS), dynamic light scattering (non-invasive backscattering), nitrogen sorption, and Rietveld analysis were used to determine phase, for particle sizing, surface area determinations, and establishing phase concentrations, respectively. This project rigorously examined the effect of alkaline concentration and hydrothermal temperature on three commercially sourced and two self-prepared TiO2 powders. These precursors consisted of both pure- or mixed-phase anatase and rutile polymorphs, and were selected to cover a range of phase concentrations and crystallite sizes. Typically, these precursors were treated with 5–10 M sodium hydroxide (NaOH) solutions at temperatures between 100–220 °C. Both nanotube and nanoribbon morphologies could be produced depending on the combination of these hydrothermal conditions. Both titania and titanate phases are comprised of TiO6 units which are assembled in different combinations. The arrangement of these atoms affects the binding energy between the Ti–O bonds. Raman spectroscopy and XPS were therefore employed in a preliminary study of phase determination for these materials. The change in binding energy from a titania to a titanate binding energy was investigated in this study, and the transformation of titania precursor into nanotubes and titanate nanoribbons was directly observed by these methods. Evaluation of the Raman and XPS results indicated a strengthening in the binding energies of both the Ti (2p3/2) and O (1s) bands which correlated to an increase in strength and decrease in resolution of the characteristic nanotube doublet observed between 320 and 220 cm.1 in the Raman spectra of these products. The effect of phase and crystallite size on nanotube formation was examined over a series of temperatures (100.200 �‹C in 20 �‹C increments) at a set alkaline concentration (7.5 M NaOH). These parameters were investigated by employing both pure- and mixed- phase precursors of anatase and rutile. This study indicated that both the crystallite size and phase affect nanotube formation, with rutile requiring a greater driving force (essentially �\harsher. hydrothermal conditions) than anatase to form nanotubes, where larger crystallites forms of the precursor also appeared to impede nanotube formation slightly. These parameters were further examined in later studies. The influence of alkaline concentration and hydrothermal temperature were systematically examined for the transformation of Degussa P25 into nanotubes and nanoribbons, and exact conditions for nanostructure synthesis were determined. Correlation of these data sets resulted in the construction of a morphological phase diagram, which is an effective reference for nanostructure formation. This morphological phase diagram effectively provides a .recipe book�e for the formation of titanate nanostructures. Morphological phase diagrams were also constructed for larger, near phase-pure anatase and rutile precursors, to further investigate the influence of hydrothermal reaction parameters on the formation of titanate nanotubes and nanoribbons. The effects of alkaline concentration, hydrothermal temperature, crystallite phase and size are observed when the three morphological phase diagrams are compared. Through the analysis of these results it was determined that alkaline concentration and hydrothermal temperature affect nanotube and nanoribbon formation independently through a complex relationship, where nanotubes are primarily affected by temperature, whilst nanoribbons are strongly influenced by alkaline concentration. Crystallite size and phase also affected the nanostructure formation. Smaller precursor crystallites formed nanostructures at reduced hydrothermal temperature, and rutile displayed a slower rate of precursor consumption compared to anatase, with incomplete conversion observed for most hydrothermal conditions. The incomplete conversion of rutile into nanotubes was examined in detail in the final study. This study selectively examined the kinetics of precursor dissolution in order to understand why rutile incompletely converted. This was achieved by selecting a single hydrothermal condition (9 M NaOH, 160 °C) where nanotubes are known to form from both anatase and rutile, where the synthesis was quenched after 2, 4, 8, 16 and 32 hours. The influence of precursor phase on nanostructure formation was explicitly determined to be due to different dissolution kinetics; where anatase exhibited zero-order dissolution and rutile second-order. This difference in kinetic order cannot be simply explained by the variation in crystallite size, as the inherent surface areas of the two precursors were determined to have first-order relationships with time. Therefore, the crystallite size (and inherent surface area) does not affect the overall kinetic order of dissolution; rather, it determines the rate of reaction. Finally, nanostructure formation was found to be controlled by the availability of dissolved titanium (Ti4+) species in solution, which is mediated by the dissolution kinetics of the precursor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How does the image of the future operate upon history, and upon national and individual identities? To what extent are possible futures colonized by the image? What are the un-said futurecratic discourses that underlie the image of the future? Such questions inspired the examination of Japan’s futures images in this thesis. The theoretical point of departure for this examination is Polak’s (1973) seminal research into the theory of the ‘image of the future’ and seven contemporary Japanese texts which offer various alternative images for Japan’s futures, selected as representative of a ‘national conversation’ about the futures of that nation. These seven images of the future are: 1. Report of the Prime Minister’s Commission on Japan’s Goals in the 21st Century—The Frontier Within: Individual Empowerment and Better Governance in the New Millennium, compiled by a committee headed by Japan’s preeminent Jungian psychologist Kawai Hayao (1928-2007); 2. Slow Is Beautiful—a publication by Tsuji Shinichi, in which he re-images Japan as a culture represented by the metaphor of the sloth, concerned with slow and quality-oriented livingry as a preferred image of the future to Japan’s current post-bubble cult of speed and economic efficiency; 3. MuRatopia is an image of the future in the form of a microcosmic prototype community and on-going project based on the historically significant island of Awaji, and established by Japanese economist and futures thinker Yamaguchi Kaoru; 4. F.U.C.K, I Love Japan, by author Tanja Yujiro provides this seven text image of the future line-up with a youth oriented sub-culture perspective on that nation’s futures; 5. IMAGINATION / CREATION—a compilation of round table discussions about Japan’s futures seen from the point of view of Japan’s creative vanguard; 6. Visionary People in a Visionless Country: 21 Earth Connecting Human Stories is a collection of twenty one essays compiled by Denmark born Tokyo resident Peter David Pedersen; and, 7. EXODUS to the Land of Hope, authored by Murakami Ryu, one of Japan’s most prolific and influential writers, this novel suggests a future scenario portraying a massive exodus of Japan’s youth, who, literate with state-of-the-art information and communication technologies (ICTs) move en masse to Japan’s northern island of Hokkaido to launch a cyber-revolution from the peripheries. The thesis employs a Futures Triangle Analysis (FTA) as the macro organizing framework and as such examines both pushes of the present and weights from the past before moving to focus on the pulls to the future represented by the seven texts mentioned above. Inayatullah’s (1999) Causal Layered Analysis (CLA) is the analytical framework used in examining the texts. Poststructuralist concepts derived primarily from the work of Michel Foucault are a particular (but not exclusive) reference point for the analytical approach it encompasses. The research questions which reflect the triangulated analytic matrix are: 1. What are the pushes—in terms of current trends—that are affecting Japan’s futures? 2. What are the historical and cultural weights that influence Japan’s futures? 3. What are the emerging transformative Japanese images of the future discourses, as embodied in actual texts, and what potential do they offer for transformative change in Japan? Research questions one and two are discussed in Chapter five and research question three is discussed in Chapter six. The first two research questions should be considered preliminary. The weights outlined in Chapter five indicate that the forces working against change in Japan are formidable, structurally deep-rooted, wide-spread, and under-recognized as change-adverse. Findings and analyses of the push dimension reveal strong forces towards a potentially very different type of Japan. However it is the seven contemporary Japanese images of the future, from which there is hope for transformative potential, which form the analytical heart of the thesis. In analyzing these texts the thesis establishes the richness of Japan’s images of the future and, as such, demonstrates the robustness of Japan’s stance vis-à-vis the problem of a perceived map-less and model-less future for Japan. Frontier is a useful image of the future, whose hybrid textuality, consisting of government, business, academia, and creative minority perspectives, demonstrates the earnestness of Japan’s leaders in favour of the creation of innovative futures for that nation. Slow is powerful in its aim to reconceptualize Japan’s philosophies of temporality, and build a new kind of nation founded on the principles of a human-oriented and expanded vision of economy based around the core metaphor of slowness culture. However its viability in Japan, with its post-Meiji historical pushes to an increasingly speed-obsessed social construction of reality, could render it impotent. MuRatopia is compelling in its creative hybridity indicative of an advanced IT society, set in a modern day utopian space based upon principles of a high communicative social paradigm, and sustainability. IMAGINATION / CREATION is less the plan than the platform for a new discussion on Japan’s transformation from an econo-centric social framework to a new Creative Age. It accords with emerging discourses from the Creative Industries, which would re-conceive of Japan as a leading maker of meaning, rather than as the so-called guzu, a term referred to in the book meaning ‘laggard’. In total, Love Japan is still the most idiosyncratic of all the images of the future discussed. Its communication style, which appeals to Japan’s youth cohort, establishes it as a potentially formidable change agent in a competitive market of futures images. Visionary People is a compelling image for its revolutionary and subversive stance against Japan’s vision-less political leadership, showing that it is the people, not the futures-making elite or aristocracy who must take the lead and create a new vanguard for the nation. Finally, Murakami’s Exodus cannot be ruled out as a compelling image of the future. Sharing the appeal of Tanja’s Love Japan to an increasingly disenfranchised youth, Exodus portrays a near-term future that is achievable in the here and now, by Japan’s teenagers, using information and communications technologies (ICTs) to subvert leadership, and create utopianist communities based on alternative social principles. The principal contribution from this investigation in terms of theory belongs to that of developing the Japanese image of the future. In this respect, the literature reviews represent a significant compilation, specifically about Japanese futures thinking, the Japanese image of the future, and the Japanese utopia. Though not exhaustive, this compilation will hopefully serve as a useful starting point for future research, not only for the Japanese image of the future, but also for all image of the future research. Many of the sources are in Japanese and their English summations are an added reason to respect this achievement. Secondly, the seven images of the future analysed in Chapter six represent the first time that Japanese image of the future texts have been systematically organized and analysed. Their translation from Japanese to English can be claimed as a significant secondary contribution. What is more, they have been analysed according to current futures methodologies that reveal a layeredness, depth, and overall richness existing in Japanese futures images. Revealing this image-richness has been one of the most significant findings of this investigation, suggesting that there is fertile research to be found from this still under-explored field, whose implications go beyond domestic Japanese concerns, and may offer fertile material for futures thinkers and researchers, Japanologists, social planners, and policy makers.