956 resultados para INVERSE GAS-CHROMATOGRAPHY
Resumo:
Vertically-aligned carbon nanotubes (VA-CNTs) were rapidly grown from ethanol and their chemistry has been studied using a "cold-gas" chemical vapor deposition (CVD) method. Ethanol vapor was preheated in a furnace, cooled down and then flowed over cobalt catalysts upon ribbon-shaped substrates at 800 °C, while keeping the gas unheated. CNTs were obtained from ethanol on a sub-micrometer scale without preheating, but on a millimeter scale with preheating at 1000 °C. Acetylene was predicted to be the direct precursor by gas chromatography and gas-phase kinetic simulation, and actually led to millimeter-tall VA-CNTs without preheating when fed with hydrogen and water. There was, however a difference in CNT structure, i.e. mainly few-wall tubes from pyrolyzed ethanol and mainly single-wall tubes for unheated acetylene, and the by-products from ethanol pyrolysis possibly caused this difference. The "cold-gas" CVD, in which the gas-phase and catalytic reactions are separately controlled, allowed us to further understand CNT growth. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The seafloor of central Eckernförde Bay is characterised by soft muddy sediments that contain free methane gas. Bubbles of free gas cause acoustic turbidity which is observed with acoustic remote sensing systems. Repeated surveys with subbottom profiler and side scan sonar revealed an annual period both of depth of the acoustic turbidity and backscatter strength. The effects are delayed by 3–4 months relative to the atmospheric temperature cycle. In addition, prominent pockmarks, partly related to gas seepage, were detected with the acoustic systems. In a direct approach gas concentrations were measured from cores using the gas chromatography technique. From different tests it is concluded that subsampling of a core should start at its base and should be completed as soon as possible, at least within 35 min after core recovery. Comparison of methane concentrations of summer and winter cores revealed no significant seasonal variation. Thus, it is concluded that the temperature and pressure influences upon solubility control the depth variability of acoustic turbidity which is observed with acoustic remote sensing systems. The delay relative to the atmospheric temperature cycle is caused by slow heat transfer through the water column. The atmospheric temperature cycle as ‘exiting function’ for variable gas solubility offers an opportunity for modelling and predicting the depth of the acoustic turbidity. In practice, however, small-scale variations of, e.g., salinity, or gas concentration profile in the sediment impose limits to predictions. In addition, oceanographic influences as mixing in the water column, variable water inflow, etc. are further complications that reduce the reliability of predictions.
Resumo:
Capillary gas chromatographic enantiomer separation of some polar compounds, including alpha-phenylethylamine, styrene oxide, pyrethroid insecticides and other carboxylates, was investigated on modified cyclodextrin (CD) chiral stationary phases. The chiral stationary phases studied included permethylated beta-CD (PMBCD), heptakis (2,6-di-O-butyl-3-O-butyryl)-beta-CD (DBBBCD), heptakis (2,6-di-O-nonyl-3-O-trifluoroacetyl)-beta-CD (DNTBCD), the mixture of PMBCD and DBBBCD, and the mixture of PMBCD and DNTBCD. On the mixed chiral stationary phases containing the mixtures of derivatized cyclodextrins, enantiomer separation was improved significantly for some compounds as compared to the single cyclodextrin derivative chiral stationary phases, and synergistic effects were observed for some compounds on the mixed cyclodextrin derivative chiral stationary phases.
Resumo:
A one-meter long column packed with silica gel is used to separate light hydrocarbons. The silica gel has been modified with several kinds of gas chromatography stationary phases. Among these, PEG 2000 shows fairly good effect when using 80-100 meshes silica gel for the separation of mixture of methane, ethane, ethylene, acetylene, propane, propylene and n-, i-butane. The different behavior of silica gel between batch to batch is also found. When silica gel is coated with a small amount of Al2O3 prepared with sol-gel method, better resolution has been observed on a 2-meter column compared with the non-modified silica gel.
Resumo:
A new method has been developed to describe the quantitative relationship between molecular structures of PCDFs and their gas chromatographic retention indices on a 30-m fused silica column coated with DB-5 stationary phase. The regression equation is derived with a multiple correlation coefficient greater than 0.9995. The highest residual is 20 index units. The standard deviation is less than 7 index units. Using this regression equation, the retention indices of PCDFs for which data is not available have also been predicted. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
BACKGROUND AND OBJECTIVES: Pain symptoms are common among Iraq/Afghanistan-era veterans, many of whom continue to experience persistent pain symptoms despite multiple pharmacological interventions. Preclinical data suggest that neurosteroids such as allopregnanolone demonstrate pronounced analgesic properties, and thus represent logical biomarker candidates and therapeutic targets for pain. Allopregnanolone is also a positive GABAA receptor modulator with anxiolytic, anticonvulsant, and neuroprotective actions in rodent models. We previously reported inverse associations between serum allopregnanolone levels and self-reported pain symptom severity in a pilot study of 82 male veterans. METHODS: The current study investigates allopregnanolone levels in a larger cohort of 485 male Iraq/Afghanistan-era veterans to attempt to replicate these initial findings. Pain symptoms were assessed by items from the Symptom Checklist-90-R (SCL-90-R) querying headache, chest pain, muscle soreness, and low back pain over the past 7 days. Allopregnanolone levels were quantified by gas chromatography/mass spectrometry. RESULTS: Associations between pain ratings and allopregnanolone levels were examined with Poisson regression analyses, controlling for age and smoking. Bivariate nonparametric Mann–Whitney analyses examining allopregnanolone levels across high and low levels of pain were also conducted. Allopregnanolone levels were inversely associated with muscle soreness [P = 0.0028], chest pain [P = 0.032], and aggregate total pain (sum of all four pain items) [P = 0.0001]. In the bivariate analyses, allopregnanolone levels were lower in the group reporting high levels of muscle soreness [P = 0.001]. CONCLUSIONS: These findings are generally consistent with our prior pilot study and suggest that allopregnanolone may function as an endogenous analgesic. Thus, exogenous supplementation with allopregnanolone could have therapeutic potential. The characterization of neurosteroid profiles may also have biomarker utility.
Resumo:
A number of chlorinated and brominated low molecular weight hydrocarbons (halocarbons) have been measured in and adjacent to the North Sea estuaries of the Humber and the Rhine. The measurements have been carried out using a newly constructed purge-and-trap sample work-up system coupled to megabore gas chromatography with electron capture detection. The results show that whereas the Humber is a pronounced source of the anthropogenic halocarbons carbon tetrachloride and perchloroethylene, the input from the Rhine into the North Sea of these compounds is more modest. Some halocarbons normally considered as mainly or even exclusively of natural origin are released from the two investigated estuaries into the North Sea. A distinct patch of high concentrations of the naturally produced compound bromoform was observed in the southwestern North Sea. The results have also been used to examine some of the halocarbons for common sources.
Resumo:
Os incêndios florestais são uma importante fonte de emissão de compostos gasosos e de aerossóis. Em Portugal, onde a maioria dos incêndios ocorre no norte e centro do país, os incêndios destroem todos os anos milhares de hectares, com importantes perdas em termos económicos, de vidas humanas e qualidade ambiental. As emissões podem alterar consideravelmente a química da atmosfera, degradar a qualidade do ar e alterar o clima. Contudo, a informação sobre as caraterísticas das emissões dos incêndios florestais nos países do Mediterrâneo é limitada. Tanto a nível nacional como internacional, existe um interesse crescente na elaboração de inventários de emissões e de regulamentos sobre as emissões de carbono para a atmosfera. Do ponto de vista atmosférico da monitorização atmosférica, os incêndios são considerados um desafio, dada a sua variabilidade temporal e espacial, sendo de esperar um aumento da sua frequência, dimensão e severidade, e também porque as estimativas de emissões dependem das caraterísticas dos biocombustíveis e da fase de combustão. O objetivo deste estudo foi quantificar e caraterizar as emissões de gases e aerossóis de alguns dos mais representativos incêndios florestais que ocorreram no centro de Portugal nos verões de 2009 e de 2010. Efetuou-se a colheita de amostras de gases e de duas frações de partículas (PM2.5 e PM2.5-10) nas plumas de fumo em sacos Tedlar e em filtros de quartzo acoplados a um amostrador de elevado volume, respetivamente. Os hidrocarbonetos totais (THC) e óxidos de carbono (CO e CO2) nas amostras gasosas foram analisados em instrumentos automáticos de ionização de chama e detetores não dispersivos de infravermelhos, respetivamente. Para algumas amostras, foram também quantificados alguns compostos de carbonilo após reamostragem do gás dos sacos Tedlar em cartuchos de sílica gel revestidos com 2,4-dinitrofenilhidrazina (DNPH), seguida de análise por cromatografia líquida de alta resolução. Nas partículas, analisou-se o carbono orgânico e elementar (técnica termo-óptica), iões solúveis em água (cromatografia iónica) e elementos (espectrometria de massa com plasma acoplado por indução ou análise instrumental por ativação com neutrões). A especiação orgânica foi obtida por cromatografia gasosa acoplada a espectrometria de massa após extração com recurso a vários solventes e separação dos extratos orgânicos em diversas classes de diferentes polaridades através do fracionamento com sílica gel. Os fatores de emissão do CO e do CO2 situaram-se nas gamas 52-482 e 822-1690 g kg-1 (base seca), mostrando, respetivamente, correlação negativa e positiva com a eficiência de combustão. Os fatores de emissão dos THC apresentaram valores mais elevados durante a fase de combustão latente sem chama, oscilando entre 0.33 e 334 g kg-1 (base seca). O composto orgânico volátil oxigenado mais abundante foi o acetaldeído com fatores de emissão que variaram desde 1.0 até 3.2 g kg-1 (base seca), seguido pelo formaldeído e o propionaldeído. Observou-se que as emissões destes compostos são promovidas durante a fase de combustão latente sem chama. Os fatores de emissão de PM2.5 e PM10 registaram valores entre 0.50-68 e 0.86-72 g kg-1 (base seca), respetivamente. A emissão de partículas finas e grosseiras é também promovida em condições de combustão lenta. As PM2.5 representaram cerca de 90% da massa de partículas PM10. A fração carbonosa das partículas amostradas em qualquer dos incêndios foi claramente dominada pelo carbono orgânico. Foi obtida uma ampla gama de rácios entre o carbono orgânico e o carbono elementar, dependendo das condições de combustão. Contudo, todos os rácios refletiram uma maior proporção de carbono orgânico em relação ao carbono elementar, típica das emissões de queima de biomassa. Os iões solúveis em água obtidos nas partículas da pluma de fumo contribuíram com valores até 3.9% da massa de partículas PM2.5 e 2.8% da massa de partículas de PM2.5-10. O potássio contribuiu com valores até 15 g mg-1 PM2.5 e 22 g mg-1 PM2.5-10, embora em massa absoluta estivesse maioritariamente presente nas partículas finas. Os rácios entre potássio e carbono elementar e entre potássio e carbono orgânico obtidos nas partículas da pluma de fumo enquadram-se na gama de valores relatados na literatura para emissões de queima de biomassa. Os elementos detetados nas amostras representaram, em média, valores até 1.2% e 12% da massa de PM2.5 e PM2.5-10, respetivamente. Partículas resultantes de uma combustão mais completa (valores elevados de CO2 e baixos de CO) foram caraterizadas por um elevado teor de constituintes inorgânicos e um menor conteúdo de matéria orgânica. Observou-se que a matéria orgânica particulada é composta principalmente por componentes fenólicos e produtos derivados, séries de compostos homólogos (alcanos, alcenos, ácidos alcanóicos e alcanóis), açúcares, biomarcadores esteróides e terpenóides, e hidrocarbonetos aromáticos policíclicos. O reteno, um biomarcador das emissões da queima de coníferas, foi o hidrocarboneto aromático dominante nas amostras das plumas de fumo amostradas durante a campanha que decorreu em 2009, devido ao predomínio de amostras colhidas em incêndios em florestas de pinheiros. O principal açúcar anidro, e sempre um dos compostos mais abundantes, foi o levoglucosano. O rácio levoglucosano/OC obtido nas partículas das plumas de fumo, em média, registaram valores desde 5.8 a 23 mg g-1 OC. Os rácios levoglucosano/manosano e levoglucosano/(manosano+galactosano) revelaram o predomínio de amostras provenientes da queima de coníferas. Tendo em conta que a estimativa das emissões dos incêndios florestais requer um conhecimento de fatores de emissão apropriados para cada biocombustível, a base de dados abrangente obtida neste estudo é potencialmente útil para atualizar os inventários de emissões. Tem vindo a ser observado que a fase de combustão latente sem chama, a qual pode ocorrer simultaneamente com a fase de chama e durar várias horas ou dias, pode contribuir para uma quantidade considerável de poluentes atmosféricos, pelo que os fatores de emissão correspondentes devem ser considerados no cálculo das emissões globais de incêndios florestais. Devido à falta de informação detalhada sobre perfis químicos de emissão, a base de dados obtida neste estudo pode também ser útil para a aplicação de modelos no recetor no sul da Europa.
Resumo:
Captan and folpet are fungicides largely used in agriculture. They have similar chemical structures, except that folpet has an aromatic ring unlike captan. Their half-lives in blood are very short, given that they are readily broken down to tetrahydrophthalimide (THPI) and phthalimide (PI), respectively. Few authors measured these biomarkers in plasma or urine, and analysis was conducted either by gas chromatography coupled to mass spectrometry or liquid chromatography with UV detection. The objective of this study was thus to develop simple, sensitive and specific liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (LC/APCI-MS/MS) methods to quantify both THPI and PI in human plasma and urine. Briefly, deuterated THPI was added as an internal standard and purification was performed by solid-phase extraction followed by LC/APCI-MS/MS analysis in negative ion mode for both compounds. Validation of the methods was conducted using spiked blank plasma and urine samples at concentrations ranging from 1 to 250 μg/L and 1 to 50 μg/L, respectively, along with samples of volunteers and workers exposed to captan or folpet. The methods showed a good linearity (R (2) > 0.99), recovery (on average 90% for THPI and 75% for PI), intra- and inter-day precision (RSD, <15%) and accuracy (<20%), and stability. The limit of detection was 0.58 μg/L in urine and 1.47 μg/L in plasma for THPI and 1.14 and 2.17 μg/L, respectively, for PI. The described methods proved to be accurate and suitable to determine the toxicokinetics of both metabolites in human plasma and urine.
Resumo:
Ox amyl , an insecticide/nematicide with the chemical name; methyl ~'. ~·-dimethyl-~-(methylcarbamoyl)oxy-l-thiooxamimidate, and its major degradation compound; oxime or oximino compound, methyl ~',~'-dimethyl-~-hydroxy-l-thiooxamimidate were studied in this work. NMR and mass spectrometry were utilized in the structural studies. An attempt was made to explain the fragmentation patterns of some major peaks in the mass spectra of oxamyl and oxime. A new gas chromatographic method for the detection and determination of submicrogram levels of intact oxamyl using a electron-capture detector was developed. The principle of this method is to produce a derivative which is highly sensitive to an electron-capture detector. The derivative described is dinitrophenyl methylamine( DNPMA ) • Experimental conditions such as pH , reaction temperature , reaction time, the amount of reagent ( Dinitrofluaro benzene) etc. were thoroughly investigated and optimized. This method was successfully applied to the determination of oxamyl residues in tobacco leaves and soil. Throughout this J9D:oject , thin layer chromatography was also used in the separation:and clean up of oxamyl and oxime samples.
Resumo:
This work includes two major parts. The first part of the work concentrated on the studies of the application of the highperfonnance liquid chromatography-particle beam interface-mass spectrometry system of some pesticides. Factors that have effects on the detection sensitivity were studied. The linearity ranges and detection limits of ten pesticides are also given in this work. The second part of the work concentrated on the studies of the reduction phenomena of nitro compounds in the HPLC-PB-MS system. Direct probe mass spectrometry and gas chromatography-mass spectrometry techniques were also used in the work. Factors that have effects on the reduction of the nitro compounds were studied, and the possible explanation is proposed. The final part of this work included the studies of reduction behavior of some other compounds in the HPLC-PB-MS system, included in them are: quinones, sulfoxides, and sulfones.
Resumo:
The mechanism of formation of pinonic and norpinonic acids from alpha-pinene ozonolysis has been investigated by studying the products of the ozonolysis of an enone derived from alpha-pinene using gas chromatography coupled to mass spectrometry.
Resumo:
The gas-phase ozonolysis of beta-pinene was studied in static chamber experiments, using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. A range of multifunctional organic acids-including pinic acid, norpinic acid, pinalic-3- acid, pinalic-4-acid, norpinalic acid and OH-pinalic acid-were identified in the condensed phase after derivatisation. Formation yields for these products under systematically varying reaction conditions (by adding different OH radical scavengers and Criegee intermediate scavengers) were investigated and compared with those observed from alpha-pinene ozonolysis, allowing detailed information on product formation mechanisms to be elucidated. In addition, branching ratios for the initial steps of the reaction were inferred from quantitative measurements of primary carbonyl formation. Atmospheric implications of this work are discussed.
Resumo:
Gas-phase ozonolysis of terpinolene was studied in static chamber experiments using gas chromatography coupled to mass spectrometric and flame ionisation detection to separate and detect products. Two isomers of C-7-diacids and three isomers of C-7-aldehydic acids were identified in the condensed phase after derivatisation. Possible mechanisms of formation of these acids were investigated using different OH radical scavengers and relative humidities, and were compared to those reported earlier for the ozonolysis of beta-pinene. In addition, branching ratios for some of the individual reaction steps, e. g. the branching ratio between the two hydroperoxide channels of the C-7-CI, were deduced from the quantitative product yield data. Branching ratios for POZ decomposition and the stabilisation/decomposition of the C-7-CI were also obtained from measurements of the C-7 primary carbonyl product.
Resumo:
This paper describes experimental studies aimed at elucidating mechanisms for the formation of low-volatility organic acids in the gas-phase ozonolysis of 3-carene. Experiments were carried out in a static chamber under 'OH-free' conditions. A range of multifunctional acids-which are analogous to those observed from alpha-pinene ozonolysis-were identified in the condensed phase using gas chromatography coupled to mass spectrometry after derivation. Product yields were determined as a function of different OH radical scavengers and relative humidities to give mechanistic information about their routes of formation. Furthermore, an enone and an enal derived from 3-carene were ozonised in order to probe the early mechanistic steps in the reaction and, in particular, which of the two initially formed Criegee intermediates gives rise to which products. Branching ratios for the formation of the two Criegee Intermediates are determined. Similarities and differences in product formation from 3-carene and alpha-pinene ozonolysis are discussed and possible mechanisms-supported by experimental evidence-are developed for all acids investigated.