963 resultados para INVARIANT SUBSPACES
Resumo:
A measure of association is row-size invariant if it is unaffected by the multiplication of all entries in a row of a cross-classification table by a same positive number. It is class-size invariant if it is unaffected by the multiplication of all entries in a class (i.e., a row or a column). We prove that every class-size invariant measure of association as-signs to each m x n cross-classification table a number which depends only on the cross-product ratios of its 2 x 2 subtables. We propose a monotonicity axiom requiring that the degree of association should increase after shifting mass from cells of a table where this mass is below its expected value to cells where it is above .provided that total mass in each class remains constant. We prove that no continuous row-size invariant measure of association is monotonic if m ≥ 4. Keywords: association, contingency tables, margin-free measures, size invariance, monotonicity, transfer principle.
Resumo:
Un algorithme permettant de discrétiser les équations aux dérivées partielles (EDP) tout en préservant leurs symétries de Lie est élaboré. Ceci est rendu possible grâce à l'utilisation de dérivées partielles discrètes se transformant comme les dérivées partielles continues sous l'action de groupes de Lie locaux. Dans les applications, beaucoup d'EDP sont invariantes sous l'action de transformations ponctuelles de Lie de dimension infinie qui font partie de ce que l'on désigne comme des pseudo-groupes de Lie. Afin d'étendre la méthode de discrétisation préservant les symétries à ces équations, une discrétisation des pseudo-groupes est proposée. Cette discrétisation a pour effet de transformer les symétries ponctuelles en symétries généralisées dans l'espace discret. Des schémas invariants sont ensuite créés pour un certain nombre d'EDP. Dans tous les cas, des tests numériques montrent que les schémas invariants approximent mieux leur équivalent continu que les différences finies standard.
Resumo:
For the discrete-time quadratic map xt+1=4xt(1-xt) the evolution equation for a class of non-uniform initial densities is obtained. It is shown that in the t to infinity limit all of them approach the invariant density for the map.
Resumo:
It is shown that the invariant integral, viz., the Kolmogorov second entropy, is eminently suited to characterize EEG quantitatively. The estimation obtained for a "clinically normal" brain is compared with a previous result obtained from the EEG of a person under epileptic seizure.
Resumo:
In this paper the class of continuous bivariate distributions that has form-invariant weighted distribution with weight function w(x1, x2) ¼ xa1 1 xa2 2 is identified. It is shown that the class includes some well known bivariate models. Bayesian inference on the parameters of the class is considered and it is shown that there exist natural conjugate priors for the parameters
Resumo:
As the popularity of digital videos increases, a large number illegal videos are being generated and getting published. Video copies are generated by performing various sorts of transformations on the original video data. For effectively identifying such illegal videos, the image features that are invariant to various transformations must be extracted for performing similarity matching. An image feature can be its local feature or global feature. Among them, local features are powerful and have been applied in a wide variety of computer vision aplications .This paper focuses on various recently proposed local detectors and descriptors that are invariant to a number of image transformations.
Resumo:
In this report, a face recognition system that is capable of detecting and recognizing frontal and rotated faces was developed. Two face recognition methods focusing on the aspect of pose invariance are presented and evaluated - the whole face approach and the component-based approach. The main challenge of this project is to develop a system that is able to identify faces under different viewing angles in realtime. The development of such a system will enhance the capability and robustness of current face recognition technology. The whole-face approach recognizes faces by classifying a single feature vector consisting of the gray values of the whole face image. The component-based approach first locates the facial components and extracts them. These components are normalized and combined into a single feature vector for classification. The Support Vector Machine (SVM) is used as the classifier for both approaches. Extensive tests with respect to the robustness against pose changes are performed on a database that includes faces rotated up to about 40 degrees in depth. The component-based approach clearly outperforms the whole-face approach on all tests. Although this approach isproven to be more reliable, it is still too slow for real-time applications. That is the reason why a real-time face recognition system using the whole-face approach is implemented to recognize people in color video sequences.
Resumo:
Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. Such a descriptor--based on a set of oriented Gaussian derivative filters-- is used in our recognition system. We report here an evaluation of several techniques for orientation estimation to achieve rotation invariance of the descriptor. We also describe feature selection based on a single training image. Virtual images are generated by rotating and rescaling the image and robust features are selected. The results confirm robust performance in cluttered scenes, in the presence of partial occlusions, and when the object is embedded in different backgrounds.
Resumo:
We present a new method to perform reliable matching between different images. This method exploits a projective invariant property between concentric circles and the corresponding projected ellipses to find complete region correspondences centered on interest points. The method matches interest points allowing for a full perspective transformation and exploiting all the available luminance information in the regions. Experiments have been conducted on many different data sets to compare our approach to SIFT local descriptors. The results show the new method offers increased robustness to partial visibility, object rotation in depth, and viewpoint angle change.
Resumo:
A scale-invariant moving finite element method is proposed for the adaptive solution of nonlinear partial differential equations. The mesh movement is based on a finite element discretisation of a scale-invariant conservation principle incorporating a monitor function, while the time discretisation of the resulting system of ordinary differential equations is carried out using a scale-invariant time-stepping which yields uniform local accuracy in time. The accuracy and reliability of the algorithm are successfully tested against exact self-similar solutions where available, and otherwise against a state-of-the-art h-refinement scheme for solutions of a two-dimensional porous medium equation problem with a moving boundary. The monitor functions used are the dependent variable and a monitor related to the surface area of the solution manifold. (c) 2005 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
In previous empirical and modelling studies of rare species and weeds, evidence of fractal behaviour has been found. We propose that weeds in modern agricultural systems may be managed close to critical population dynamic thresholds, below which their rates of increase will be negative and where scale-invariance may be expected as a consequence. We collected detailed spatial data on five contrasting species over a period of three years in a primarily arable field. Counts in 20×20 cm contiguous quadrats, 225,000 in 1998 and 84,375 thereafter, could be re-structured into a wide range of larger quadrat sizes. These were analysed using three methods based on correlation sum, incidence and conditional incidence. We found non-trivial scale invariance for species occurring at low mean densities and where they were strongly aggregated. The fact that the scale-invariance was not found for widespread species occurring at higher densities suggests that the scaling in agricultural weed populations may, indeed, be related to critical phenomena.
Resumo:
In a previous paper, we discovered a surprising spectrally-invariant relationship in shortwave spectrometer observations taken by the Atmospheric Radiation Measurement (ARM) program. The relationship suggests that the shortwave spectrum near cloud edges can be determined by a linear combination of zenith radiance spectra of the cloudy and clear regions. Here, using radiative transfer simulations, we study the sensitivity of this relationship to the properties of aerosols and clouds, to the underlying surface type, and to the finite field-of-view (FOV) of the spectrometer. Overall, the relationship is mostly sensitive to cloud properties and has little sensitivity to other factors. At visible wavelengths, the relationship primarily depends on cloud optical depth regardless of cloud phase function, thermodynamic phase and drop size. At water-absorbing wavelengths, the slope of the relationship depends primarily on cloud optical depth; the intercept, by contrast, depends primarily on cloud absorbing and scattering properties, suggesting a new retrieval method for cloud drop effective radius. These results suggest that the spectrally-invariant relationship can be used to infer cloud properties near cloud edges even with insufficient or no knowledge about spectral surface albedo and aerosol properties.