917 resultados para INTERFACIAL ADSORPTION
Resumo:
Nanoclusters are objects made up of several to thousands of atoms and form a transitional state of matter between single atoms and bulk materials. Due to their large surface-to-volume ratio, nanoclusters exhibit exciting and yet poorly studied size dependent properties. When deposited directly on bare metal surfaces, the interaction of the cluster with the substrate leads to alteration of the cluster properties, making it less or even non-functional. Surfaces modified with self-assembled monolayers (SAMs) were shown to form an interesting alternative platform, because of the possibility to control wettability by decreasing the surface reactivity and to add functionalities to pre-formed nanoclusters. In this thesis, the underlying size effects and the influence of the nanocluster environment are investigated. The emphasis is on the structural and magnetic properties of nanoclusters and their interaction with thiol SAMs. We report, for the first time, a ferromagnetic-like spin-glass behaviour of uncapped nanosized Au islands tens of nanometres in size. The flattening kinetics of the nanocluster deposition on thiol SAMs are shown to be mediated mainly by the thiol terminal group, as well as the deposition energy and the particle size distribution. On the other hand, a new mechanism for the penetration of the deposited nanoclusters through the monolayers is presented, which is fundamentally different from those reported for atom deposition on alkanethiols. The impinging cluster is shown to compress the thiol layer against the Au surface and subsequently intercalate at the thiol-Au interface. The compressed thiols try then to straighten and push the cluster away from the surface. Depending on the cluster size, this restoring force may or may not enable a covalent cluster-surface bond formation, giving rise to various cluster-surface binding patterns. Compression and straightening of the thiol molecules pinpoint the elastic nature of the SAMs, which has been investigated in this thesis using nanoindentation. The nanoindenation method has been applied to SAMs of varied tail groups, giving insight into the mechanical properties of thiol modified metal surfaces.
Resumo:
Nitrogen is dissociatively adsorbed on an annealed Ni/TiO2 surface just as on a Ti–Ni alloy surface while it is molecularly adsorbed on a Ni/Al2O3 surface.
Resumo:
Oxygen is shown to adsorb molecularly on a clean Cu(110) surface at 80 K and dissociate around 150 K forming atomic oxygen. Adsorption of oxygen on an HCl covered surface at low temperatures results in the formation of adsorbed hydroxyl groups and water in addition to adsorbed molecular oxygen. The molecular oxygen species is stable up to 190 K on the HCl covered surface.
Resumo:
Three distinct mechanisms — sliding, bonding and bearing — for the mobilisation of interfacial friction have been identified. In the light of these mechanisms, the effect of variation in reinforcement parameters, such as extensibility, flexibility and hardness on mobilisation of interfacial friction, and the mechanisms themselves has been examined. The influence of boundary effects of apparatus on the interfacial friction has been discussed and a method of estimating the same in a pull-out box has been proposed.
Resumo:
We present results on interfacial shear rheology measurements on Langmuir monolayers of two different polymers, poly(vinyl acetate) and poly(methyl methacrylate) as a function of surface concentration and temperature. While for the high glass transition poly(methyl methacrylate) polymer we find a systematic transition from a viscous dominated regime to an elastic dominated regime as surface concentration is increased, monolayers of the low glass transition polymer, poly(vinyl acetate), remain viscous even at very high surface concentrations. We further interpret the results in terms of the soft glassy rheology model of Sollich et al. P. Sollich, F. C. Lequeux, P. Hebraud and M. E. Cates, Phys. Rev. Lett., 1997, 78, 2020-2023] and provide evidence of possible reduction in glass transition temperatures in both poly(methyl methacrylate) and poly(vinyl acetate) monolayers due to finite size effects.
Resumo:
Adsorption of n-alkane mixtures in the zeolite LTA-5A under liquid-phase conditions has been studied using grand canonical Monte Carlo (GCMC) simulations combined with parallel tempering. Normal GCMC techniques fail for some of these systems due to the preference of linear molecules to coil within a single cage in the zeolite. The narrow zeolite windows severerly restrict interactions of the molecules, making it difficult to simulate cooperative rearrangements necessary to explore configuration space. Because of these reasons, normal GCMC simulations results show poor reproducibility in some cases. These problems were overcome with parallel tempering techniques. Even with parallel tempering, these are very challenging systems for molecular simulation. Similar problems may arise for other zeolites such as CHA, AFX, ERI, KFI, and RHO having cages connected by narrow windows. The simulations capture the complex selectivity behavior observed in experiments such as selectivity inversion and azeotrope formation.
Resumo:
The physico-chemical, photo-physical and micro-structural properties responsible for the strikingly different photocatalytic behavior of combustion-prepared TiO2 (c.TiO2) and Degussa P25 (d.TiO2) samples are elucidated in this study. Electron microscopy and selected area electron diffraction micrographs revealed that the two samples exhibited different morphologies. The grains of c.TiO2 were spherical and comprised of 5-6 nm size primary particle. On the other hand, d.TiO2 consisted of large (0.5-3.0 mu m) size and irregular shape aggregates having primary particles of 15-40 nm cross-sectional diameter. The ESR study revealed that the presence of certain defect states in c.TiO2 helped in stabilization of O-. and Ti3+-OH type species during room-temperature UV-irradiation. No such paramagnetic species were however formed over d.TiO2 under similar conditions. C1s and Ti 2p XPS spectra provide evidence for the presence of some lattice vacancies in c.TiO2 and also for the bulk Ti4+ -> Ti3+ conversion during its UV-irradiation. Compared to d.TiO2, c.TiO2 displayed considerably higher activity for discoloration of methyl orange but very poor activity for splitting of water, both under UV and visible light radiations. This is attributed to enhanced surface adsorption of dye molecules over c.TiO2, because of its textural features and also the presence of photo-active ion-radicals. On the other hand, the poor activity of c.TiO2 for water splitting is related to certain defect-induced inter-band charge trapping states in the close vicinity of valence and conduction bands of c.TiO2, as revealed by thermoluminescence spectroscopy. Further, the dispersion of nanosize gold particles gave rise to augmented activity of both the catalysts, particularly for water splitting. This is explained by the promotional role of Au-0 or Au-0/TiO2 interfacial sites in the adsorption and charge-adsorbate interaction processes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Estimates of interfacial friction angle (delta) are necessary for the design of retaining structures and deep foundations, Recommendations in the literature regarding delta values are often contradictory and are therefore not easy to apply in geotechnical design, A critical examination of past studies in terms of data generation techniques used and conclusions drawn indicates that two distinctly different test procedures/techniques have been evolved. The interfacial situation in practice can also be categorized into two broad types, These two types of interface problems in geotechnical engineering are (a) the structure is placed on the free surface of prepared fill (type A situation) and (b) the fill is placed against the material surface which functions as a confined boundary (type B situation), The friction angle delta depends on the surface roughness of the construction material, But in the type A situation, it is independent of density and its limiting maximum value (delta(lim)) is the critical state friction angle phi(cv). In the type B situation, it is dependent on density of the fill and its limiting maximum value is the peak angle of internal friction phi(p) of the fill.
Resumo:
Expressions for various second-order derivatives of surface tension with respect to composition at infinite dilution in terms of the interaction parameters of the surface and those of the bulk phases of dilute ternary melts have been presented. A method of deducing the parameters, which consists of repeated differentiation of Butler's equations with subsequent application of the appropriate boundary conditions, has been developed. The present investigation calculates the surface tension and adsorption functions of the Fe-S-O melts at 1873 and 1923 K using the modified form of Butler's equations and the derived values for the surface interaction parameters of the system. The calculated values are found to be in good agreement with those of the experimental data of the system. The present analysis indicates that the energetics of the surface phase are considerably different from those of the bulk phase. The present research investigates a critical compositional range beyond which the surface tension increases with temperature. The observed increase in adsorption of sulfur with consequent desorption of oxygen as a function of temperature above the critical compositional range has been ascribed to the increase of activity ratios of oxygen to sulfur in the surface relative to those in the bulk phase of the system.
Resumo:
In this paper, the effect of phosphate anion adsorption on the permeability values of homoionized kaolinite and montmorillonite clays is presented. The homoionized sodium, calcium and hydrogen clays are prepared by repeatedly washing the clays with 2N solutions of corresponding chlorides. Phosphate adsorption was induced by treating homoionized clays with phosphoric acids for different periods varying upto 1000 hrs. The coefficient of permeability of the clays was determined from one dimensional consolidation test results. The decrease in the permeability of kaolinite clays on phosphate adsorption has been explained on the fabric changes. For montmorillonite, both cation exchange and phosphate adsorption causes significant changes which are explained based on variation in the thickness of diffuse double layer.
Resumo:
Tetragonal ZrO2 was synthesized by the solution combustion technique using glycine as the fuel. The compound was characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and BET surface area analysis. The ability of this compound to adsorb dyes was investigated, and the compound had a higher adsorption capacity than commercially activated carbon. Infrared spectroscopic observations were used to determine the various interactions and the groups responsible for the adsorption activity of the compound. The effects of the initial concentration of the dye, temperature, adsorbent concentration, and pH of the solution were studied. The kinetics of adsorption was described as a first-order process, and the relative magnitudes of internal and external mass transfer processes were determined. The equilibrium adsorption was also determined and modeled by a composite Langmuir-Freundlich isotherm.
Resumo:
A differential pulse polarographic (DPP) method based on the adsorption catalytic current in a medium containing chlorate and 8-hydroxyquinoline (oxine) is suggested for the determination of molybdenum(VI). Experimental conditions such as pH and the composition of supporting electrolyte have been optimized to get a linear calibration graph at trace levels of Mo(VI). The sensitivity for molybdenum can be considerably enhanced by this method. The influence of possible interferences on the catalytic current has been investigated. The sensitivity of the method is compared with those obtained for other DPP methods for molybdenum. A detection limit of 1.0 x 10(-8) mol/L has been found.