976 resultados para INDUCED REFRACTIVE-INDEX
Resumo:
Photonic structures with a sub-wavelength pitch, small enough to suppress diffraction, can behave as equivalent homogenous materials that can be engineered to exhibit a specific refractive index and dispersion. Here we discuss the design of a variety of integrated photonic devices, ranging from grating couplers to multimode interference couplers, for which the use of sub-wavelength structures enables unique characteristics. We will place special emphasis on the design and experimental demonstration of multi-mode interference couplers with an unprecedented bandwidth beyond 200nm at telecom wavelengths.
Resumo:
DNA as powerful building molecule, is widely used for the assembly of molecular structures and dynamic molecular devices with different potential applications, ranging from synthetic biology to diagnostics. The feature of sequence programmability, which makes it possible to predict how single stranded DNA molecules fold and interact with one another, allowed the development of spatiotemporally controlled nanostructures and the engineering of supramolecular devices. The first part of this thesis addresses the development of an integrated chemiluminescence (CL)-based lab-on-chip sensor for detection of Adenosine-5-triphosphate (ATP) life biomarker in extra-terrestrial environments.Subsequently, we investigated whether it is possible to study the interaction and the recognition between biomolecules and their targets, mimicking the intracellular environment in terms of crowding, confinement and compartmentalization. To this purpose, we developed a split G-quadruplex DNAzyme platform for the chemiluminescent and quantitative detection of antibodies based on antibody-induced co-localization proximity mechanism in which a split G-quadruplex DNAzyme is led to reassemble into the functional native G-quadruplex conformation as the effect of a guided spatial nanoconfinement.The following part of this thesis aims at developing chemiluminescent nanoparticles for bioimaging and photodynamic therapy applications.In chapter5 a realistic and accurate evaluation of the potentiality of electrochemistry and chemiluminescence (CL) for biosensors development (i.e., is it better to “measure an electron or a photon”?), has been achieved.In chapter 6 the emission anisotropy phenomenon for an emitting dipole bound to the interface between two media with different refractive index has been investigated for chemiluminescence detection.
Resumo:
This chapter provides a short review of quantum dots (QDs) physics, applications, and perspectives. The main advantage of QDs over bulk semiconductors is the fact that the size became a control parameter to tailor the optical properties of new materials. Size changes the confinement energy which alters the optical properties of the material, such as absorption, refractive index, and emission bands. Therefore, by using QDs one can make several kinds of optical devices. One of these devices transforms electrons into photons to apply them as active optical components in illumination and displays. Other devices enable the transformation of photons into electrons to produce QDs solar cells or photodetectors. At the biomedical interface, the application of QDs, which is the most important aspect in this book, is based on fluorescence, which essentially transforms photons into photons of different wavelengths. This chapter introduces important parameters for QDs' biophotonic applications such as photostability, excitation and emission profiles, and quantum efficiency. We also present the perspectives for the use of QDs in fluorescence lifetime imaging (FLIM) and Förster resonance energy transfer (FRET), so useful in modern microscopy, and how to take advantage of the usually unwanted blinking effect to perform super-resolution microscopy.
Resumo:
We report measurements of the nonlinear (NL) refractive index n(2) of lead-germanium films (LGFs) containing Cu and Cu(2)O nanoparticles (NPs). The thermally managed eclipse Z-scan technique with 150 fs pulses from a laser operating at 800 nm was used. The NL refractive index measured, n(2)=6.3x10(-12) cm(2)/W has electronic origin and the NL absorption coefficient alpha(2) is smaller than 660 cm/GW. The figure of merit n(2)/lambda alpha(2) is enhanced by more than two orders of magnitude in comparison with the result for the LGFs without the copper based NPs. (C) 2008 American Institute of Physics.
Resumo:
We experimentally investigate the Bragg reflection of light at one-dimensionally ordered atomic structures by using cold atoms trapped in a laser standing wave. By a fine-tuning of the periodicity, we reach the regime of multiple reflection due to the refractive index contrast between layers, yielding an unprecedented high reflectance efficiency of 80%. This result is explained by the occurrence of a photonic band gap in such systems, in accordance with previous predictions.
Resumo:
The third-harmonic optical susceptibility, chi((3))(3 omega; omega, omega, omega) of a silicate glass ceramic containing sodium niobate nanocrystals was measured for incident broadband light with central frequency omega corresponding to 1900nm. Absolute values of |chi((3))| and the dispersion of the refractive index from 600 to 1900nm were measured using the spectrally resolved femtosecond Maker fringes technique. The experiments show that |chi((3))| is 1 order of magnitude larger than silica, and it grows by similar to 50% when the volume fraction occupied by the nanocrystals increases up to 40%. (C) 2011 Optical Society of America
Resumo:
We have determined two-photon absorption and nonlinear refraction spectra of the 50BO(1.5) - (50-x)PbF(2) - xPbO glasses (with x = 25, 35, 50 cationic %) at the range of the 470 and 1550 nm. The replacement of fluor atoms by oxygen leads to an increase in the third-order susceptibility, due to the formation of non-bridging oxygens (NBO). The nonlinear index of refraction is one order of magnitude higher than the one for fused silica, and it increases almost twice for the sample with x = 50. This sample has also shown promising features for all-optical switching as well as for optical limiting. (C) 2011 Optical Society of America
Resumo:
Microfabrication via two-photon absorption polymerization is a technique to design complex microstructures in a simple and fast way. The applications of such structures range from mechanics to photonics to biology, depending on the dopant material and its specific properties. In this paper, we use two-photon absorption polymerization to fabricate optically active microstructures containing the conductive and luminescent polymer poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV). We verify that MEH-PPV retains its optical activity and is distributed throughout the microstructure after fabrication. The microstructures retain the emission characteristics of MEH-PPV and allow waveguiding of locally excited fluorescence when fabricated on top of low refractive index substrates. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3232207]
Resumo:
Structural and optical properties of stable glasses in the Y(2)O(3)-CaO-B(2)O(3) system, containing the same Y/Ca ratio as the YCa(4)O(BO(3))(3) (YCOB) crystal, were determined from Raman and reflectance infrared spectroscopy. Changes in optical functions with composition are associated with an increase in the number of non-bridging oxygen and to calcium/yttrium oxides content. Refractive indexes values (from 1.597 to 1.627 at lambda=2 mu m) are in good agreement with those of the YCOB crystal, an indication that these glasses are potential candidates for optical applications due to their ease of shaping as large bulk samples or fibers.
Resumo:
We present a femtosecond third-harmonic generation Maker fringes technique capable of simultaneously providing the magnitude of the cubic nonlinearity and the refractive index dispersion of optical materials. This technique takes advantage of the high intensity and broad spectral band of femtosecond pulses, but requires the use of a spectrometer to deconvolute the information contained in Maker fringes produced by the broad band light. (C) 2008 American Institute of Physics.
Resumo:
In this work, thermal and optical properties of the commercial Q-98 neodymium-doped phosphate glass have been measured at low temperature, from 50 to 300 K. The time-resolved thermal lens spectrometry together with the optical interferometry and the thermal relaxation calorimetry methods were used to investigate the glass athermal characteristics described by the temperature coefficient of the optical path length change, ds/dT. The thermal diffusivity was also determined, and the temperature coefficients of electronic polarizability, linear thermal expansion, and refractive index were calculated and used to explain ds/dT behavior. ds/dT measured via thermal lens method was found to be zero at 225 K. The results provided a complete characterization of the thermo-optical properties of the Q-98 glass, which may be useful for those using this material for diode-pumped solid-state lasers. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3234396]
Resumo:
Time-resolved Z-scan measurements were performed in a Nd(3+)-doped Sr(0.61)Ba(0.39)Nb(2)O(6) laser crystal through ferroelectric phase transition. Both the differences in electronic polarizability (Delta alpha(p)) and cross section (Delta sigma) of the neodymium ions have been found to be strongly modified in the surroundings of the transition temperature. This observed unusual behavior is concluded to be caused by the remarkable influence that the structural changes associated to the ferro-to-paraelectric phase transition has on the 4f -> 5d transition probabilities. The maximum polarizability change value Delta alpha(p)=1.2x10(-25) cm(3) obtained at room temperature is the largest ever measured for a Nd(3+)-doped transparent material.
Resumo:
The reverse engineering problem addressed in the present research consists of estimating the thicknesses and the optical constants of two thin films deposited on a transparent substrate using only transmittance data through the whole stack. No functional dispersion relation assumptions are made on the complex refractive index. Instead, minimal physical constraints are employed, as in previous works of some of the authors where only one film was considered in the retrieval algorithm. To our knowledge this is the first report on the retrieval of the optical constants and the thickness of multiple film structures using only transmittance data that does not make use of dispersion relations. The same methodology may be used if the available data correspond to normal reflectance. The software used in this work is freely available through the PUMA Project web page (http://www.ime.usp.br/similar to egbirgin/puma/). (C) 2008 Optical Society of America
Resumo:
Experimental results for the activity of water in aqueous solutions of 10 single polyelectrolytes (two polysodium acrylates, two polysodium methacrylates, three polyammonium acrylates, two polysodium ethylene sulfonates, and one polysodium styrene sulfonate) at (298.2 and 323.2) K are reported. The isopiestic method was employed in these experiments with aqueous solutions of sodium chloride as references. The polyelectrolytes were characterized by three averaged molecular masses determined by gel permeation chromatography. Furthermore, the density and the refractive index increments of the aqueous polyelectrolyte solutions are reported. Although a similar pattern for the activity of water was observed for all systems (i.e., the osmotic coefficient increases with rising polyelectrolyte concentration), the experimental results show that this property depends on the monomer type as well as on the size of the polymer chain. The temperature (varied from (298.2 to 323.2) K) has only a small influence on the activity of water.
Resumo:
Over the last decades, anti-resonant reflecting optical waveguides (ARROW) have been used in different integrated optics applications. In this type of waveguide, light confinement is partially achieved through an anti-resonant reflection. In this work, the simulation, fabrication and characterization of ARROW waveguides using dielectric films deposited by a plasma-enhanced chemical vapor deposition (PECVD) technique, at low temperatures(similar to 300 degrees C), are presented. Silicon oxynitride (SiO(x)N(y)) films were used as core and second cladding layers and amorphous hydrogenated silicon carbide(a-SiC:H) films as first cladding layer. Furthermore, numerical simulations were performed using homemade routines based on two computational methods: the transfer matrix method (TMM) for the determination of the optimum thickness of the Fabry-Perot layers; and the non-uniform finite difference method (NU-FDM) for 2D design and determination of the maximum width that yields single-mode operation. The utilization of a silicon carbide anti-resonant layer resulted in low optical attenuations, which is due to the high refractive index difference between the core and this layer. Finally, for comparison purposes, optical waveguides using titanium oxide (TiO(2)) as the first ARROW layer were also fabricated and characterized.