954 resultados para IMMUNOLOGICAL SYNAPSE
Resumo:
It is well established that trans-placental transmission of classical swine fever virus (CSFV) during mid-gestation can lead to persistently infected offspring. The aim of the present study was to evaluate the ability of CSFV to induce viral persistence upon early postnatal infection. Two litters of 10 piglets each were infected intranasally on the day of birth with low and moderate virulence CSFV isolates, respectively. During six weeks after postnatal infection, most of the piglets remained clinically healthy, despite persistent high virus titres in the serum. Importantly, these animals were unable to mount any detectable humoral and cellular immune response. At necropsy, the most prominent gross pathological lesion was a severe thymus atrophy. Four weeks after infection, PBMCs from the persistently infected seronegative piglets were unresponsive to both, specific CSFV and non-specific PHA stimulation in terms of IFN-γ-producing cells. These results suggested the development of a state of immunosuppression in these postnatally persistently infected pigs. However, IL-10 was undetectable in the sera of the persistently infected animals. Interestingly, CSFV-stimulated PBMCs from the persistently infected piglets produced IL-10. Nevertheless, despite the addition of the anti-IL-10 antibody in the PBMC culture from persistently infected piglets, the response of the IFN-γ producing cells was not restored. Therefore, other factors than IL-10 may be involved in the general suppression of the T-cell responses upon CSFV and mitogen activation. Interestingly, bone marrow immature granulocytes were increased and targeted by the virus in persistently infected piglets. Taken together, we provided the first data demonstrating the feasibility of CSFV in generating a postnatal persistent disease, which has not been shown for other members of the Pestivirus genus yet. Since serological methods are routinely used in CSFV surveillance, persistently infected pigs might go unnoticed. In addition to the epidemiological and economic significance of persistent CSFV infection, this model could be useful for understanding the mechanisms of viral persistence.
Resumo:
The potential impact of periodontal disease, a suspected risk factor for systemic diseases, presents challenges for health promotion and disease prevention strategies. This study examined clinical, microbiological, and immunological factors in a disease model to identify potential biomarkers that may be useful in predicting the onset and severity of both inflammatory and destructive periodontal disease. This project used an historical cohort design based on data obtained from 47 adult, female nonhuman primates followed over a 6-year period for 5 unique projects where the ligature-induced model of periodontitis was utilized. Standardization of protocols for sample collection allowed for comparison over time. Bleeding and pocket depth measures were selected as the dependent variables of relevance to humans based upon the literature and historical observations. Exposure variables included supragingival plaque, attachment level, total bacteria, black-pigmented bacteria, Gram-negative and Gram-positive bacteria, total IgG and IgA in crevicular fluid, specific IgG antibody in both crevicular fluid and serum, and IgG antibody to four select pathogenic microorganisms. Three approaches were used to analyze the data from this study. The first approach tested for differences in the means of the response variables within the group and among longitudinal observations within the group at each time point. The second approach examined the relationship among the clinical, microbiological, and immunological variables using correlation coefficients and stratified analyses. Multivariable models using GEE for repeated measures were produced as a predictive description of the induction and progression of gingivitis and periodontal disease. The multivariable models for bleeding (gingivitis) include supragingival plaque, total bacteria and total IgG while the second also contains supragingival plaque, Gram-positive bacteria, and total IgG. Two multivariable models emerged for periodontal disease. One multivariable model contains plaque, total bacteria, total IgG and attachment level. The second model includes black-pigmented bacteria, total bacteria, antibody to Campylobacter rectus, and attachment level. Utilization of the nonhuman primate model to prospectively examine causal hypotheses can provide a focus for human research on the mechanisms of progression from health to gingivitis to periodontitis. Ultimately, causal theories can guide strategies to prevent disease initiation and reduce disease severity. ^
Resumo:
IMMUNOLOGICAL MECHANISMS OF EXTRACORPOREAL PHOTOPHERESIS IN CUTANEOUS T CELL LYMPHOMA AND GRAFT VERSUS HOST DISEASE Publication No.___________ Lisa Harn-Ging Shiue, B.S. Supervisory Professor: Madeleine Duvic, M.D. Extracorporeal photopheresis (ECP) is an effective, low-risk immunomodulating therapy for leukemic cutaneous T cell lymphoma (L-CTCL) and graft versus host disease (GVHD), but whether the mechanism(s) of action in these two diseases is (are) identical or different is unclear. To determine the effects of ECP in vivo, we studied regulatory T cells (T-regs), cytotoxic T lymphocytes (CTLs), and dendritic cells (DCs) by immunofluorescence flow cytometry in 18 L-CTCL and 11 GVHD patients before and after ECP at Day 2, 1 month, 3 months, and 6 months. In this study, ECP was effective in 12/18 L-CTCL patients with a 66.7% overall response rate (ORR) and 6/11 GVHD patients with a 54.5% ORR. Prior to ECP, the percentages of CD4+Foxp3+ T cells in 9 L-CTCL patients were either lower (L-CTCL-Low, n=2) or higher (L-CTCL-High, n=7) than normal. Five of the 7 GVHD patients had high percentages of CD4+Foxp3+ T cells (GVHD-High). Six of 7 L-CTCL-High patients had >80% CD4+Foxp3+ T cells which were correlated with tumor cells, and were responders. Both L-CTCL-High and GVHD-High patients had decreased percentages of CD4+Foxp3+ and CD4+Foxp3+CD25- T cells after 3 months of treatment. CD4+Foxp3+CD25+ T cells increased in GVHD-High patients but decreased in L-CTCL-High patients after 3 months of ECP. In addition, numbers of CTLs were abnormal. We confirmed that numbers of CTLs were low in L-CTCL patients, but high in GVHD patients prior to ECP. After ECP, CTLs increased after 1 month in 4/6 L-CTCL patients whereas CTLs decreased after 6 months in 3/3 GVHD patients. Myeloid (mDCs) and plasmacytoid DCs (pDCs) were also low at baseline in L-CTCL and GVHD patients confirming the DC defect. After 6 months of ECP, numbers and percentages of mDCs and pDCs increased in L-CTCL and GVHD. MDCs were favorably increased in 8/12 L-CTCL responders whereas pDCs were favorably increased in GVHD patients. These data suggest that ECP is favorably modulating the DC subsets. In L-CTCL patients, the mDCs may orchestrate Th1 cell responses to overcome immune suppression and facilitate disease regression. However, in GVHD patients, ECP is favorably down-regulating the immune system and may be facilitating immune tolerance to auto-or allo-antigens. In both L-CTCL and GVHD patients, DCs are modulated, but the T cell responses orchestrated by the DCs are different, suggesting that ECP modulates depending on the immune milieu. _______________
Resumo:
Hippocampal sclerosis is the most frequent pathology encountered in resected mesial temporal structures from patients with intractable temporal lobe epilepsy (TLE). Here, we have used stereological methods to compare the overall density of synapses and neurons between non-sclerotic and sclerotic hippocampal tissue obtained by surgical resection from patients with TLE. Specifically, we examined the possible changes in the subiculum and CA1, regions that seem to be critical for the development and/or maintenance of seizures in these patients. We found a remarkable decrease in synaptic and neuronal density in the sclerotic CA1, and while the subiculum from the sclerotic hippocampus did not display changes in synaptic density, the neuronal density was higher. Since the subiculum from the sclerotic hippocampus displays a significant increase in neuronal density, as well as a various other neurochemical changes, we propose that the apparently normal subiculum from the sclerotic hippocampus suffers profound alterations in neuronal circuits at both the molecular and synaptic level that are likely to be critical for the development or maintenance of seizure activity
Resumo:
Voltage-dependent Ca2+ currents evoke synaptic transmitter release. Of six types of Ca2+ channels, L-, N-, P-, Q-, R-, and T-type, only N- and P/Q-type channels have been pharmacologically identified to mediate action-potential-evoked transmitter release in the mammalian central nervous system. We tested whether Ca2+ channels other than N- and P/Q-type control transmitter release in a calyx-type synapse of the rat medial nucleus of the trapezoid body. Simultaneous recordings of presynaptic Ca2+ influx and the excitatory postsynaptic current evoked by a single action potential were made at single synapses. The R-type channel, a high-voltage-activated Ca2+ channel resistant to L-, N-, and P/Q-type channel blockers, contributed 26% of the total Ca2+ influx during a presynaptic action potential. This Ca2+ current evoked transmitter release sufficiently large to initiate an action potential in the postsynaptic neuron. The R-type current controlled release with a lower efficacy than other types of Ca2+ currents. Activation of metabotropic glutamate receptors and γ-aminobutyric acid type B receptors inhibited the R-type current. Because a significant fraction of presynaptic Ca2+ channels remains unidentified in many other central synapses, the R-type current also could contribute to evoked transmitter release in these synapses.
Resumo:
We use mathematical models to study the relationship between HIV and the immune system during the natural course of infection and in the context of different antiviral treatment regimes. The models suggest that an efficient cytotoxic T lymphocyte (CTL) memory response is required to control the virus. We define CTL memory as long-term persistence of CTL precursors in the absence of antigen. Infection and depletion of CD4+ T helper cells interfere with CTL memory generation, resulting in persistent viral replication and disease progression. We find that antiviral drug therapy during primary infection can enable the development of CTL memory. In chronically infected patients, specific treatment schedules, either including deliberate drug holidays or antigenic boosts of the immune system, can lead to a re-establishment of CTL memory. Whether such treatment regimes would lead to long-term immunologic control deserves investigation under carefully controlled conditions.
Resumo:
Tyrosine phosphorylation has been shown to be an important modulator of synaptic transmission in both vertebrates and invertebrates. Such findings hint toward the existence of extracellular ligands capable of activating this widely represented signaling mechanism at or close to the synapse. Examples of such ligands are the peptide growth factors which, on binding, activate receptor tyrosine kinases. To gain insight into the physiological consequences of receptor tyrosine kinase activation in squid giant synapse, a series of growth factors was tested in this preparation. Electrophysiological, pharmacological, and biochemical analysis demonstrated that nerve growth factor (NGF) triggers an acute and specific reduction of the postsynaptic potential amplitude, without affecting the presynaptic spike generation or presynaptic calcium current. The NGF target is localized at a postsynaptic site and involves a new TrkA-like receptor. The squid receptor crossreacts with antibodies generated against mammalian TrkA, is tyrosine phosphorylated in response to NGF stimulation, and is blocked by specific pharmacological inhibitors. The modulation described emphasizes the important role of growth factors on invertebrate synaptic transmission.
Resumo:
Inhibitory killer Ig-like receptors (KIR) at the surface of natural killer (NK) cells induced clustering of HLA-C at the contacting surface of target cells. In this manner, inhibitory immune synapses were formed as human NK cells surveyed target cells. At target/NK cell synapses, HLA-C/KIR distributed into rings around central patches of intercellular adhesion molecule-1/lymphocyte function-associated antigen-1, the opposite orientation to mature murine T cell-activating synapses. This organization of protein was stable for at least 20 min. Cells could support multiple synapses simultaneously, and clusters of HLA-C moved as NK cells crawled over target cells. Clustering required a divalent metal cation, explaining how metal chelators inhibit KIR function. Surprisingly, however, formation of inhibitory synapses was unaffected by ATP depletion and the cytoskeletal inhibitors, colchicine and cytochalsins B and D. Clearly, supramolecular organization within plasma membranes is critical for NK cell immunosurveillance.
Resumo:
The increased expression of epidermal growth factor receptor induced by tumor necrosis factor α renders pancreatic cancer cells more susceptible to antibody-dependent cellular cytotoxicity by a mAb specific for this receptor. Laboratory studies with athymic mice bearing xenografts of human pancreatic cancer cells demonstrated a cytokine-induced ability of the mAb to cause significant tumor regression. In a phase I/II clinical trial, 26 patients with unresectable pancreatic cancer were enrolled into three cohorts receiving variable amounts of the antibody together with a constant amount of tumor necrosis factor α. With increasing doses of antibody, the growth of the primary tumor was significantly inhibited. This was reflected by a longer median survival, with one complete remission lasting for 3 years obtained with the highest dose of antibody employed. Thus, a combination of the cytokine, tumor necrosis factor α, with a mAb to the epidermal growth factor receptor offers a potentially useful approach for the treatment of pancreatic cancer.
Resumo:
Electrophysiological, morphological, and biochemical approaches were combined to study the effect of the presynaptic injection of the light chain of botulinum toxin C1 into the squid giant synapse. Presynaptic injection was accompanied by synaptic block that occurred progressively as the toxin filled the presynaptic terminal. Neither the presynaptic action potential nor the Ca2+ currents in the presynaptic terminal were affected by the toxin. Biochemical analysis of syntaxin moiety in squid indicates that the light chain of botulinum toxin C1 lyses syntaxin in vitro, suggesting that this was the mechanism responsible for synaptic block. Ultrastructure of the injected synapses demonstrates an enormous increase in the number of presynaptic vesicles, suggesting that the release rather than the docking of vesicles is affected by biochemical lysing of the syntaxin molecule.
Resumo:
Many peripheral solid tumors such as sarcomas and carcinomas express tumor-specific antigens that can serve as targets for immune effector T cells. Nevertheless, overall immune surveillance against such tumors seems relatively inefficient. We studied immune surveillance against a s.c. sarcoma expressing a characterized viral tumor antigen. Surprisingly, the tumor cells were capable of inducing a protective cytotoxic T cell response if transferred as a single-cell suspension. However, if they were transplanted as small tumor pieces, tumors readily grew. Tumor growth correlated strictly with (i) failure of tumor cells to reach the draining lymph nodes and (ii) absence of primed cytotoxic T cells. Cytotoxic T cells were not tolerant or deleted because a tumor antigen-specific cytotoxic T cell response was readily induced in lymphoid tissue by immunization with virus or with tumor cells even in the presence of large tumors. Established tumors were rejected by vaccine-induced effector T cells if effector T cells were maintained by prolonged or repetitive vaccination, but not by single-dose vaccination. Thus, in addition to several other tumor-promoting parameters, some antigenic peripheral sarcomas—and probably carcinomas—may grow not because they anergize or tolerize tumor-specific T cells, but because such tumors are immunologically dealt with as if they were in a so-called immunologically privileged site and are ignored for too long.
Resumo:
γ-Aminobutyric acid type A receptors (GABAARs) are ligand-gated chloride channels that exist in numerous distinct subunit combinations. At postsynaptic membrane specializations, different GABAAR isoforms colocalize with the tubulin-binding protein gephyrin. However, direct interactions of GABAAR subunits with gephyrin have not been reported. Recently, the GABAAR-associated protein GABARAP was found to bind to the γ2 subunit of GABAARs. Here we show that GABARAP interacts with gephyrin in both biochemical assays and transfected cells. Confocal analysis of neurons derived from wild-type and gephyrin-knockout mice revealed that GABARAP is highly enriched in intracellular compartments, but not at gephyrin-positive postsynaptic membrane specializations. Our data indicate that GABARAP–gephyrin interactions are not important for postsynaptic GABAAR anchoring but may be implicated in receptor sorting and/or targeting mechanisms. Consistent with this idea, a close homolog of GABARAP, p16, has been found to function as a late-acting intra-Golgi transport factor.
Resumo:
Elimination of excess climbing fiber (CF)–Purkinje cell synapses during cerebellar development involves a signaling pathway that includes type 1 metabotropic glutamate receptor, Gαq, and the γ isoform of protein kinase C. To identify phospholipase C (PLC) isoforms involved in this process, we generated mice deficient in PLCβ4, one of two major isoforms expressed in Purkinje cells. PLCβ4 mutant mice are viable but exhibit locomotor ataxia. Their cerebellar histology, parallel fiber synapse formation, and basic electrophysiology appear normal. However, developmental elimination of multiple CF innervation clearly is impaired in the rostral portion of the cerebellar vermis, in which PLCβ4 mRNA is predominantly expressed. By contrast, CF synapse elimination is normal in the caudal cerebellum, in which low levels of PLCβ4 mRNA but reciprocally high levels of PLCβ3 mRNA are found. These results indicate that PLCβ4 transduces signals that are required for CF synapse elimination in the rostral cerebellum.