951 resultados para IMMOBILIZED BIOMASS
Resumo:
Recruitment of bay anchovy (Anchoa mitchilli) in Chesapeake is related to variability in hydrological conditions and to abundance and spatial distribution of spawning stock biomass (SSB). Midwater-trawl surveys conducted for six years, over the entire 320-km length of the bay, provided information on anchovy SSB, annual spatial patterns of recruitment, and their relationships to variability in the estuarine environment. SSB of anchovy varied sixfold in 1995–2000; it alone explained little variability in young-of-the-year (YOY) recruitment level in October, which varied ninefold. Recruitments were low in 1995 and 1996 (47 and 31 Z 109) but higher in 1997–2000 (100 to 265 Z 109). During the recruitment process the YOY population migrated upbay before a subsequent fall-winter downbay migration. The extent of the downbay migration by maturing recruits was greatest in years of high freshwater input to the bay. Mean dissolved oxygen (DO) was more important than freshwater input in controlling distribution of SSB and shifts in SSB location between April– May (prespawning) and June–August (spawning) periods. Recruitments of bay anchovy were higher when mean DO was lowest in the downbay region during the spawning season. It is hypothesized that anchovy recruitment level is inversely related to mean DO concentration because low DO is associated with high plankton productivity in Chesapeake Bay. Additionally, low DO conditions may confine most bay anchovy spawners to the downbay region, where production of larvae and juveniles is enhanced. A modified Ricker stock-recruitment model indicated density-compensatory recruitment with respect to SSB and demonstrated the importance of spring-summer DO levels and spatial distribution of SSB as controllers of bay anchovy recruitment.
Resumo:
Fishery-independent estimates of spawning biomass (BSP) of the Pacific sardine (Sardinops sagax) on the south and lower west coasts of Western Australia (WA) were obtained periodically between 1991 and 1999 by using the daily egg production method (DEPM). Ichthyoplankton data collected during these surveys, specifically the presence or absence of S. sagax eggs, were used to investigate trends in the spawning area of S. sagax within each of four regions. The expectation was that trends in BSP and spawning area were positively related. With the DEPM model, estimates of BSP will change proportionally with spawning area if all other variables remain constant. The proportion of positive stations (PPS), i.e., stations with nonzero egg counts — an objective estimator of spawning area — was high for all south coast regions during the early 1990s (a period when the estimated BSP was also high) and then decreased after the mid-1990s. There was a decrease in PPS from the mid-1990s to 1999. The particularly low estimates in 1999 followed a severe epidemic mass mortality of S. sagax throughout their range across southern Australia. Deviations from the expected relationship between BSP and PPS were used to identify uncertainty around estimates of BSP. Because estimation of spawning area is subject to less sampling bias than estimation of BSP, the deviation in the relation between the two provides an objective basis for adjusting some estimates of the latter. Such an approach is particularly useful for fisheries management purposes when sampling problems are suspected to be present. The analysis of PPS undertaken from the same set of samples from which the DEPM estimate is derived will help provide information for stock assessments and for the management of purse-seine fisheries.
Resumo:
A general model for yield-per-recruit analysis of rotational (periodic) fisheries is developed and applied to the sea scallop (Placopecten magellanicus) fishery of the northwest Atlantic. Rotational fishing slightly increases both yield- and biomass-per-recruit for sea scallops at FMAX. These quantities decline less quickly when fishing mortality is increased beyond FMAX than when fishing is at a constant rate. The improvement in biomass-per-recruit appears to be nearly independent of the selectivity pattern but increased size-at-entry can reduce or eliminate the yield-per-recruit advantage of rotation. Area closures and rotational fishing can cause difficulties with the use of standard spatially averaged fishing mortality metrics and reference points. The concept of temporally averaged fishing mortality is introduced as one that is more appropriate for sedentary resources when fishing mortality varies in time and space.
Resumo:
An assessment of the total biomass of shortbelly rockfish (Sebastes jordani) off the central California coast is presented that is based on a spatially extensive but temporally restricted ichthyoplankton survey conducted during the 1991 spawning season. Contemporaneous samples of adults were obtained by trawl sampling in the study region. Daily larval production (7.56 × 1010 larvae/d) and the larval mortality rate (Z=0.11/d) during the cruise were estimated from a larval “catch curve,” wherein the logarithm of total age-specific larval abundance was regressed against larval age. For this analysis, larval age compositions at each of the 150 sample sites were determined by examination of otolith microstructure from subsampled larvae (n=2203), which were weighted by the polygonal Sette-Ahlstrom area surrounding each station. Female population weight-specific fecundity was estimated through a life table analysis that incorporated sex-specific differences in adult growth rate, female maturity, fecundity, and natural mortality (M). The resulting statistic (102.17 larvae/g) was insensitive to errors in estimating M and to the pattern of recruitment. Together, the two analyses indicated that a total biomass equal to 1366 metric tons (t)/d of age-1+ shortbelly rockfish (sexes combined) was needed to account for the observed level of spawning output during the cruise. Given the long-term seasonal distribution of spawning activity in the study area, as elucidated from a retrospective examination of California Cooperative Oceanic Fisheries Investigation (CalCOFI) ichthyoplankton samples from 1952 to 1984, the “daily” total biomass was expanded to an annual total of 67,392 t. An attempt to account for all sources of error in the derivation of this estimate was made by application of the delta-method, which yielded a coefficient of variation of 19%. The relatively high precision of this larval production method, and the rapidity with which an absolute biomass estimate can be obtained, establishes that, for some species of rockfish (Sebastes spp.), it is an attractive alternative to traditional age-structured stock assessments.
Resumo:
An intensive commercial hook-and-line fishing operation targeted the demersal fisheries resources at Saya de Malha Bank in the Southwest Indian Ocean. Fishing was conducted with 12 dories that were equipped with echo sounders and electric fishing reels and supported by a refrigerated mothership. Over a 13-day period in the 55–130 m depth range, a total of 74.3 metric tons (t) of fish were caught, of which the crimson jobfish (Pristipomoides filamentosus) represented 80%. Catch rates decreased with time and could not be attributed to changes in location, climatic conditions, fishing depth, fishing method, or bait type. The initial virgin biomass of P. filamentosus available to a line fishery at the North Western promontory of Saya de Malha Bank was estimated at 72.6 t through application of the Leslie model to daily catch and effort data. Biomass densities of 2364 kg/km2 and 1206 kg/km were obtained by applying the initial biomass estimates to the surface area and to the length of the dropoff that was fished. The potential sustainable yield prior to exploitation was estimated at 567 kg/km2 per year. The quantity of P. filamentosus caught by the mother-ship-dory fishing operation represented 82% of the initial biomass available to a hook-and-line fishery, equivalent to more that three times the estimated maximum sustainable yield. The results of the study are important to fisheries managers because they demonstrate that intensive line fishing operations have the potential to rapidly deplete demersal fisheries resources.
Resumo:
The faunal composition, distribution and abundance of zooplankton from 28 stations in and around the Gulf of Kutch, were studied during INS Darshak cruise in January, 1975. Zooplankton biomass was about 4.5 times more in the outside Gulf region (mean: 50.3 ml/100 m super(3)) than in the inside Gulf (mean: 11.1 ml/100 m super(3)). The mean zooplankton biomass of Dwarka (66.3 ml/100 m super(3)) was about 2.5 times more than that off Okha (26.8 ml/100 m super(3)). A rich zooplankton production in the Saurashtra waters corresponded to a rich fishery prevailing in this region.