937 resultados para IMAGE-POTENTIAL STATES
Resumo:
A simple model potential is used to calculate Rydberg series for the molecules: nitrogen, oxygen, nitric oxide, carbon monoxide, carbon dioxide, nitrogen dioxide, nitrous oxide, acetylene, formaldehyde, formic acid, diazomethane, ketene, ethylene, allene, acetaldehyde, propyne, acrolein, dimethyl ether, 1, 3-butadiene, 2-butene, and benzene. The model potential for a molecule is taken as the sum of atomic potentials, which are calibrated to atomic data and contain no further parameters. Our results agree with experimentally measured values to within 5-10% in all cases. The results of these calculations are applied to many unresolved problems connected with the above molecules. Some of the more notable of these problems are the reassignment of states in carbon monoxide, the first ionization potential of nitrogen dioxide, the interpretation of the V state in ethylene, and the mystery bands in substituted ethylenes, the identification of the R and R’ series in benzene and the determination of the orbital scheme in benzene from electron impact data.
Resumo:
The European Water Framework Directive requires member states to restore aquatic habitats to good ecological status (quality) by 2015. Good ecological status is defined as slightly different from high status, which, according to the Directive, means negligible human influence. This poses problems enough for restoration of natural habitats but artificial reservoirs are not excluded from the Directive. They must be restored to good ecological potential. The meaning of good ecological status is linked to that of 'high' ecological status, the pristine reference condition for aquatic habitats under the Directive. From the point of view of an ecologist, this is taken to mean the presence of four fundamental characteristics: nutrient parsimony, characteristic biological and physical structure, connectivity within a wider system and adequate size to give resilience of the biological communities to environmental change. These characteristics are strongly interrelated. Ecological potential must bear some relationship to ecological status but since the reference state for ecological quality is near absence of human impact, it is difficult to see how the criteria for ecological status can be applied to a completely man-made entity where the purpose of the dam is deliberately to interfere with the natural characteristics of a river or former natural lake. Rservoirs are disabled lakes, ususally lakcing the diversity and function provided by a littoral zone. Nonetheless, pragmatic approaches to increasing the biodiversity of reservours are reviewed and conclusions drawn as to the likely effectivemess of the legislation.
Resumo:
Quantum well states of Ag films grown on stepped Au(111) surfaces are shown to undergo lateral scattering, in analogy with surface states of vicinal Ag(111). Applying angle resolved photoemission spectroscopy we observe quantum well bands with zone-folding and gap openings driven by surface/interface step lattice scattering. Experiments performed on a curved Au(111) substrate allow us to determine a subtle terrace-size effect, i.e., a fine step-density-dependent upward shift of quantum well bands. This energy shift is explained as mainly due to the periodically stepped crystal potential offset at the interface side of the film. Finally, the surface state of the stepped Ag film is analyzed with both photoemission and scanning tunneling microscopy. We observe that the stepped film interface also affects the surface state energy, which exhibits a larger terrace-size effect compared to surface states of bulk vicinal Ag(111) crystals
Resumo:
Locate full-text(opens in a new window)|View at Publisher|
Export
| Download
| More...
Atmospheric Measurement Techniques
Volume 8, Issue 5, 27 May 2015, Pages 2183-2193
Estimating reflectivity values from wind turbines for analyzing the potential impact on weather radar services (Article)
Angulo, I.a,
Grande, O.a,
Jenn, D.b,
Guerra, D.a,
De La Vega, D.a
a University of the Basque Country (UPV/EHU), Bilbao, Spain
b Naval Postgraduate School, Monterey, United States
View references (28)
Abstract
The World Meteorological Organization (WMO) has repeatedly expressed concern over the increasing number of impact cases of wind turbine farms on weather radars. Current signal processing techniques to mitigate wind turbine clutter (WTC) are scarce, so the most practical approach to this issue is the assessment of the potential interference from a wind farm before it is installed. To do so, and in order to obtain a WTC reflectivity model, it is crucial to estimate the radar cross section (RCS) of the wind turbines to be built, which represents the power percentage of the radar signal that is backscattered to the radar receiver.
For the proposed model, a representative scenario has been chosen in which both the weather radar and the wind farm are placed on clear areas; i.e., wind turbines are supposed to be illuminated only by the lowest elevation angles of the radar beam.
This paper first characterizes the RCS of wind turbines in the weather radar frequency bands by means of computer simulations based on the physical optics theory and then proposes a simplified model to estimate wind turbine RCS values. This model is of great help in the evaluation of the potential impact of a certain wind farm on the weather radar operation.
Resumo:
Night sharks, Carcharhinus signatus, are an oceanic species generally occurring in outer continental shelf waters in the western North Atlantic Ocean including the Caribbean Sea and Gulf of Mexico. Although not targeted, night sharks make up a segment of the shark bycatch in the pelagic longline fishery. Historically, night sharks comprised a significant proportion of the artisanal Cuban shark fishery but today they are rarely caught. Although information from some fisheries has shown a decline in catches of night sharks, it is unclear whether this decline is due to changes in fishing tactics, market, or species identification. Despite the uncertainty in the decline, the night shark is currently listed as a species of concern due to alleged declines in abundance resulting from fishing effort, i.e. overutilization. To assess their relevance to the species of concern list, we collated available information on the night shark to provide an analysis of its status. Night shark landings were likely both over- and under-reported and thus probably did not reflect all commercial and recreational catches, and overall they have limited relevance to the current status of the species. Average size information has not changed considerably since the 1980’s based on information from the pelagic longline fishery when corrected for gear bias. Analysis of biological information indicates night sharks have intrinsic rates of increase (r) about 10% yr–1 and have moderate rebound potential and an intermediate generation time compared to other sharks. An analysis of trends in relative abundance from four data sources gave conflicting results, with one series in decline, two series increasing, and one series relatively flat. Based on the analysis of all currently available information, we believe the night shark does not qualify as a species of concern but should be retained on the prohibited species list as a precautionary approach to management until a more comprehensive stock assessment can be conducted.
Resumo:
Since 1979, anglers along the U.S. Atlantic coast have landed by weight more bluefish, Pomatomus saltatrix, than any other marine species. A fishery management plan has been developed jointly by three fishery management councils and the Atlantic States Marine Fisheries Commission to preserve the bluefish resource. Major objectives of the plan include prevention of recruitment overfishing and reduction in waste of bluefish. In 1985, a Federal survey found PCB concentrations in larger bluefish (over 500 mm fork length) that exceeded the U.S. Food and Drug Administration tolerance level of 2 parts per million. Harvest strategies are presented in this article to protect the reproductive capability of bluefish while minimizing human health risks associated with dietary intake of PCB's.
Resumo:
The Indo-pacific panther grouper (Chromileptes altiveli) is a predatory fish species and popular imported aquarium fish in the United States which has been recently documented residing in western Atlantic waters. To date, the most successful marine invasive species in the Atlantic is the lionfish (Pterois volitans/miles), which, as for the panther grouper, is assumed to have been introduced to the wild through aquarium releases. However, unlike lionfish, the panther grouper is not yet thought to have an established breeding population in the Atlantic. Using a proven modeling technique developed to track the lionfish invasion, presented is the first known estimation of the potential spread of panther grouper in the Atlantic. The employed cellular automaton-based computer model examines the life history of the subject species including fecundity, mortality, and reproductive potential and combines this with habitat preferences and physical oceanic parameters to forecast the distribution and periodicity of spread of this potential new invasive species. Simulations were examined for origination points within one degree of capture locations of panther grouper from the United States Geological Survey Nonindigenous Aquatic Species Database to eliminate introduction location bias, and two detailed case studies were scrutinized. The model indicates three primary locations where settlement is likely given the inputs and limits of the model; Jupiter Florida/Vero Beach, the Cape Hatteras Tropical Limit/Myrtle Beach South Carolina, and Florida Keys/Ten Thousand Islands locations. Of these locations, Jupiter Florida/Vero Beach has the highest settlement rate in the model and is indicated as the area in which the panther grouper is most likely to become established. This insight is valuable if attempts are to be made to halt this potential marine invasive species
Resumo:
Estuaries provide critical nursery habitat for many commercially and recreationally important fish and shellfish species. These productive, diverse ecosystems are particularly vulnerable to pollution because they serve as repositories for non–point-source contaminants from upland sources, such as pesticide runoff. Atrazine, among the most widely used pesticides in the United States, has also been one of the most extensively studied. There has not, however, been a specific assessment of atrazine in marine and estuarine ecosystems. This document characterizes the presence and transformation of atrazine in coastal waters, and the effects of atrazine on marine organisms. Review of marine and estuarine monitoring data indicate that atrazine is chronically present in U.S. coastal waters at relatively low concentrations. The concentrations detected have typically been below acute biological effects levels, and below the U.S. EPA proposed water quality criteria for atrazine. While direct risk of atrazine impacts are low, uncertainty remains regarding the effects of long-term low levels of atrazine in mixture with other contaminants. It is recommended that best management practices, such as the use of vegetative buffers and public education about pesticide use, be encouraged in the coastal zone to minimize runoff of atrazine into marine and estuarine waters.
Resumo:
Status of the southeastern U.S. stock of red porgy (Pagrus pagrus) was estimated from fishery-dependent and fishery-independent data, 1972–97. Annual population numbers and fishing mortality rates at age were estimated from virtual population analysis (VPA) calibrated with fishery-independent data. For the VPA, a primary matrix of catch at age was based on age-length keys from fishery-independent samples; an alternate matrix was based on fishery-dependent keys. Additional estimates of stock status were obtained from a surplus-production model, also calibrated with fishery-independent indices of abundance. Results describe a dramatic increase in exploitation of this stock and concomitant decline in abundance. Estimated fully recruited fishing mortality rate (F) from the primary catch matrix increased from 0.10/yr in 1975 to 0.88/yr in 1997, and estimated static spawning potential ratio (SPR) declined from about 67% to about 18%. Estimated recruitment to age 1 declined from a peak of 3.0 million fish in 1973–74 to 94,000 fish in 1997, a decline of 96.9%. Estimated spawning-stock biomass declined from a peak of 3530 t in 1979 to 397 t in 1997, a decline of 88.8%. Results from the alternate catch matrix were similar. Retrospective patterns in the VPA suggest that the future estimates of this population decline will be severe, but may be less than present estimates. Long-term and marked declines in recruitment, spawning stock, and catch per unit of effort (both fishery-derived and fishery-independent)are consistent with severe overexploitation during a period of reduced recruitment. Although F prior to 1995 has generally been estimated at or below the current management criterion for overfishing (F equivalent to SPR=35%), the recent spawning-stock biomass is well below the biomass that could support maximum sustainable yield. Significant reductions in fishing mortality will be needed for rebuilding the southeastern U.S. stock.
Resumo:
Phytoplankton productivity is the common and important factor being considered in determining the overall status of a given body of water. This is because they are found at the base of an energy or food chain, being the basic source of primary food in a given aquatic system. Hence, information on their contribution is essential in indicating how much biomass energy will be available to all other living resources in the system. Though the primary productivity of shallow lakes is characterized by mixed populations of phytoplankton and submersed aquatic vegetation in the open water. Lake Choghakhor, is a shallow lake, located in Chaharmahal-Bakhtiyari Province. This lake is the most important ecosystem in the region especially for waterfowl populations, has a recreational value and supports tourism and fisheries. During last decade Choghakhor has been influenced by some man-made impacts such as water level fluctuation, agricultural discharge and fish (Cyprinids) introduction causing a serious problem in its trophic states. So water quality for physical, chemical and biological was monitored in five sampling stations, from April 2003 to March 2004. As biological parameters we studied phytoplankton, epiphytic algae, and zooplankton and macrobenthose community structure. Chlorophyll a content for phytoplankton and epiphytes was measured to estimate production of these groups (biomass over time). Also we determined biomasses of submersed macrophytes and macrobenthose and primary production of phytoplankton (dark and light bottles technique) to estimate fish production. The results of this study showed Lake Choghakhor did not undergo stable thermal and oxygen stratification, and the lake water was mixed throughout the study (the lake mixing regime is polymictic). Now submerged plants especially Myriophyllum spicatum has covered almost the entire lake and dense macrophyte beds (Polygonom amphibium), located on the east southern end of the lake appear to act as a sink for these nutrients. Lake Choghakhor appeared to be in a macrophyte dominated clear water state with low TP (annual mean: 24± 15μg.l-1) and chlorophyll a (annual mean: 3±1.28μg.l-1) concentrations and very high Secchi depth. The grazing pressure of dominant pelagic filtering zooplankton Daphnia longespina did not seem to be significant in determining the low phytoplankton crop expressed as chlorophyll a. We expect that sequestering of nutrients by submerged plants and associated epiphytes are the dominant stabilizing mechanisms suppressing the phytoplankton crop of Lake Choghakhor.
Resumo:
Concerns have been raised over the sustainability of the fisheries resource base of Lake Victoria for some time. The draft National Fisheries Policy states: "The key issues in the fisheries sector are resource depletion through overfishing aggravated by use of destructive fishing gear and methods" (MAAIF 2000). A fishery is said to be degraded if any or all of the indicators begin to show including decline in catches from the fishery, higher proportion of immature fish in the catch and reduction in the species composition of the catch. Inadequate implementation of fisheries management is considered the main cause of resource degradation. One of the factors identified as constraints to fisheries management has been lack of involvement of the resource users.
Resumo:
In Cambodia, fish provide a major source of animal protein for rural households. Capture fisheries have declined and aquaculture has been identified as playing an important role in food and nutritional security and rural income generation. In 2011, WorldFish, in partnership with the Stung Treng Fishery Administration Cantonment and the Culture and Environment Preservation Association, aimed at improving the uptake of small-scale aquaculture by communities with limited experience in fish culture in Stung Treng Province in northeast Cambodia. The system was given the name “WISH ponds,” derived from the combination of the words "water" and "fish" to reflect the integration of fish cultivation with water for storage and vegetable growing. It was targeted towards households with limited space to construct large aquaculture ponds, such as peri-urban households. The study indicated that WISH ponds can create an important learning platform for communities to address challenges associated with small-scale aquaculture development by using scientific data generated and owned by the participants. Results from this 2011 study provided important insights into the challenges and constraints for introducing small-scale aquaculture into rural households in Cambodia. In mid-2013, WorldFish won a Feed the Future Partnering for Innovation grant, funded by the United States Agency for International Development, to build upon its successful engagement with communities in northeast Cambodia where WISH ponds had already been introduced and investigate scaling this technology to establish more WISH ponds in these communities.
Resumo:
Calibration of a camera system is a necessary step in any stereo metric process. It correlates all cameras to a common coordinate system by measuring the intrinsic and extrinsic parameters of each camera. Currently, manual calibration of a camera system is the only way to achieve calibration in civil engineering operations that require stereo metric processes (photogrammetry, videogrammetry, vision based asset tracking, etc). This type of calibration however is time-consuming and labor-intensive. Furthermore, in civil engineering operations, camera systems are exposed to open, busy sites. In these conditions, the position of presumably stationary cameras can easily be changed due to external factors such as wind, vibrations or due to an unintentional push/touch from personnel on site. In such cases manual calibration must be repeated. In order to address this issue, several self-calibration algorithms have been proposed. These algorithms use Projective Geometry, Absolute Conic and Kruppa Equations and variations of these to produce processes that achieve calibration. However, most of these methods do not consider all constraints of a camera system such as camera intrinsic constraints, scene constraints, camera motion or varying camera intrinsic properties. This paper presents a novel method that takes all constraints into consideration to auto-calibrate cameras using an image alignment algorithm originally meant for vision based tracking. In this method, image frames are taken from cameras. These frames are used to calculate the fundamental matrix that gives epipolar constraints. Intrinsic and extrinsic properties of cameras are acquired from this calculation. Test results are presented in this paper with recommendations for further improvement.
Resumo:
Image-based (i.e., photo/videogrammetry) and time-of-flight-based (i.e., laser scanning) technologies are typically used to collect spatial data of infrastructure. In order to help architecture, engineering, and construction (AEC) industries make cost-effective decisions in selecting between these two technologies with respect to their settings, this paper makes an attempt to measure the accuracy, quality, time efficiency, and cost of applying image-based and time-of-flight-based technologies to conduct as-built 3D reconstruction of infrastructure. In this paper, a novel comparison method is proposed, and preliminary experiments are conducted. The results reveal that if the accuracy and quality level desired for a particular application is not high (i.e., error < 10 cm, and completeness rate > 80%), image-based technologies constitute a good alternative for time-of-flight-based technologies and significantly reduce the time and cost needed for collecting the data on site.
Resumo:
We present an analytical field-effect method to extract the density of subgap states (subgap DOS) in amorphous semiconductor thin-film transistors (TFTs), using a closed-form relationship between surface potential and gate voltage. By accounting the interface states in the subthreshold characteristics, the subgap DOS is retrieved, leading to a reasonably accurate description of field-effect mobility and its gate voltage dependence. The method proposed here is very useful not only in extracting device performance but also in physically based compact TFT modeling for circuit simulation. © 2012 IEEE.