620 resultados para Hypertrophic cardiomyopathy
Resumo:
AIMS: Cardiac myopathies are the second leading cause of death in patients with Duchenne and Becker muscular dystrophy, the two most common and severe forms of a disabling striated muscle disease. Although the genetic defect has been identified as mutations of the dystrophin gene, very little is known about the molecular and cellular events leading to progressive cardiac muscle damage. Dystrophin is a protein linking the cytoskeleton to a complex of transmembrane proteins that interact with the extracellular matrix. The fragility of the cell membrane resulting from the lack of dystrophin is thought to cause an excessive susceptibility to mechanical stress. Here, we examined cellular mechanisms linking the initial membrane damage to the dysfunction of dystrophic heart. METHODS AND RESULTS: Cardiac ventricular myocytes were enzymatically isolated from 5- to 9-month-old dystrophic mdx and wild-type (WT) mice. Cells were exposed to mechanical stress, applied as osmotic shock. Stress-induced cytosolic and mitochondrial Ca(2+) signals, production of reactive oxygen species (ROS), and mitochondrial membrane potential were monitored with confocal microscopy and fluorescent indicators. Pharmacological tools were used to scavenge ROS and to identify their possible sources. Osmotic shock triggered excessive cytosolic Ca(2+) signals, often lasting for several minutes, in 82% of mdx cells. In contrast, only 47% of the WT cardiomyocytes responded with transient and moderate intracellular Ca(2+) signals. On average, the reaction was 6-fold larger in mdx cells. Removal of extracellular Ca(2+) abolished these responses, implicating Ca(2+) influx as a trigger for abnormal Ca(2+) signalling. Our further experiments revealed that osmotic stress in mdx cells produced an increase in ROS production and mitochondrial Ca(2+) overload. The latter was followed by collapse of the mitochondrial membrane potential, an early sign of cell death. CONCLUSION: Overall, our findings reveal that excessive intracellular Ca(2+) signals and ROS generation link the initial sarcolemmal injury to mitochondrial dysfunctions. The latter possibly contribute to the loss of functional cardiac myocytes and heart failure in dystrophy. Understanding the sequence of events of dystrophic cell damage and the deleterious amplification systems involved, including several positive feed-back loops, may allow for a rational development of novel therapeutic strategies.
Resumo:
BACKGROUND: Transient left ventricular apical ballooning syndrome (TLVABS) is an acute cardiac syndrome mimicking ST-segment elevation myocardial infarction characterized by transient wall-motion abnormalities involving apical and mid-portions of the left ventricle in the absence of significant obstructive coronary disease. METHODS: Searching the MEDLINE database 28 case series met the eligibility criteria and were summarized in a narrative synthesis of the demographic characteristics, clinical features and pathophysiological mechanisms. RESULTS: TLVABS is observed in 0.7-2.5% of patients with suspected ACS, affects women in 90.7% (95% CI: 88.2-93.2%) with a mean age ranging from 62 to 76 years and most commonly presents with chest pain (83.4%, 95% CI: 80.0-86.7%) and dyspnea (20.4%, 95% CI: 16.3-24.5%) following an emotionally or physically stressful event. ECG on admission shows ST-segment elevations in 71.1% (95% CI: 67.2-75.1%) and is accompanied by usually mild elevations of Troponins in 85.0% (95% CI: 80.8-89.1%). Despite dramatic clinical presentation and substantial risk of heart failure, cardiogenic shock and arrhythmias, LVEF improved from 20-49.9% to 59-76% within a mean time of 7-37 days with an in-hospital mortality rate of 1.7% (95% CI: 0.5-2.8%), complete recovery in 95.9% (95% CI: 93.8-98.1%) and rare recurrence. The underlying etiology is thought to be based on an exaggerated sympathetic stimulation. CONCLUSION: TLVABS is a considerable differential diagnosis in ACS, especially in postmenopausal women with a preceding stressful event. Data on longterm follow-up is pending and further studies will be necessary to clarify the etiology and reach consensus in acute and longterm management of TLVABS.
Resumo:
The clinical manifestations of anti-cancer drug associated cardiac side effects are diverse and can range from acutely induced cardiac arrhythmias to Q-T interval prolongation, changes in coronary vasomotion with consecutive myocardial ischemia, myocarditis, pericarditis, severe contractile dysfunction, and potentially fatal heart failure. The pathophysiology of these adverse effects is similarly heterogeneous and the identification of potential mechanisms is frequently difficult since the majority of cancer patients is not only treated with a multitude of cancer drugs but might also be exposed to potentially cardiotoxic radiation therapy. Some of the targets inhibited by new anti-cancer drugs also appear to be important for the maintenance of cellular homeostasis of normal tissue, in particular during exposure to cytotoxic chemotherapy. If acute chemotherapy-induced myocardial damage is only moderate, the process of myocardial remodeling can lead to progressive myocardial dysfunction over years and eventually induce myocardial dysfunction and heart failure. The tools for diagnosing anti-cancer drug associated cardiotoxicity and monitoring patients during chemotherapy include invasive and noninvasive techniques as well as laboratory investigations and are mostly only validated for anthracycline-induced cardiotoxicity and more recently for trastuzumab-associated cardiac dysfunction.
Resumo:
BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an important cause of sudden death in young adults. On the basis of histopathological findings its pathogenesis may involve both a genetic origin and an inflammatory process. Bartonella henselae may cause endomyocarditis and was detected in myocardium from a young male who succumbed to sudden cardiac death. HYPOTHESIS: We hypothesized that chronic infection with Bartonella henselae could contribute to the pathogenesis of ARVC. METHODS: We investigated sera from 49 patients with ARVC for IgG antibodies to Bartonella henselae. In this study, 58 Swiss blood donors tested by the same method served as controls. RESULTS: Six patients with ARVC (12%) had positive (>1:256) IgG titres in the immunofluorescence test with Bartonella henselae. In contrast, only 1 elevated titre was found in 58 controls (p < or = 0.05). Interestingly, all patients with increased titres had no familial occurrence of ARVC. CONCLUSIONS: Further studies in larger patient cohorts seem justified to investigate a possible causal link between chronic Bartonella henselae and ARVC, in particular its sporadic (nonfamilial) form.
Resumo:
The Growth/Differentiation Factors (GDFs) are a subgroup of the Bone Morphogenetic Proteins (BMPs) well known for their role in joint formation and chondrogenesis. Mice deficient in one of these signaling molecules, GDF-5, have recently been shown to exhibit a decreased rate of endochondral bone growth in the proximal tibia due to a significantly longer hypertrophic phase duration. GDF-7 is a related family member, which exhibits a high degree of sequence identity with GDF-5. The purpose of the present study was to determine whether GDF-7 deficiency also alters the endochondral bone growth rate in mice and, if so, how this is achieved. Stereologic and cell kinetic parameters in proximal tibial growth plates from 5-week-old female GDF-7 -/- mice and wild type control littermates were examined. GDF-7 deficiency resulted in a statistically significant increase in growth rate (+26%; p = 0.0084) and rate of cell loss at the chondrosseous junction (+25%; p = 0.0217). Cells from GDF-7 deficient mice also exhibited a significantly shorter hypertrophic phase duration compared to wild type controls (-27%; p = 0.0326). These data demonstrate that, in the absence of GDF-7, the rate of endochondral bone growth is affected through the modulation of hypertrophic phase duration in growth plate chondrocytes. These findings further support a growing body of evidence implicating the GDFs in the formation, maturation, and maintenance of healthy cartilage.
Resumo:
The growth/differentiation factors (GDFs) are a subgroup of the bone morphogenetic proteins best known for their role in joint formation and chondrogenesis. Mice deficient in one of these signaling proteins, GDF-5, exhibit numerous skeletal abnormalities, including shortened limb bones. The primary aim of this study was determine whether GDF-5 deficiency would alter the growth rate in growth plates from the long bones in mice and, if so, how this is achieved. Stereologic and cell kinetic parameters in proximal tibial growth plates from 5-week-old female GDF-5 -/- mice and control littermates were examined. GDF-5 deficiency resulted in a statistically significant reduction in growth rate (-14%, p=0.03). The effect of genotype on growth rate was associated with an altered hypertrophic phase duration, with hypertrophic cells from GDF-5 deficient mice exhibiting a significantly longer phase duration compared to control littermates (+25%, p=0.006). These data suggest that one way in which GDF-5 might modulate the rate of endochondral bone growth could be by affecting the duration of the hypertrophic phase in growth plate chondrocytes.
Resumo:
Cardiomyopathies are myocardial diseases that lead to cardiac dysfunction, heart failure, arrhythmia, and sudden death. In human medicine, cardiomyopathies frequently warrant heart transplantation in children and adults. Bovine dilated cardiomyopathy (BDCMP) is a heart muscle disorder that has been observed during the last 30 years in cattle of Holstein-Friesian origin. In Switzerland BDCMP affects Swiss Fleckvieh and Red Holstein breeds. BDCMP is characterized by a cardiac enlargement with ventricular remodeling and chamber dilatation. The common symptoms in affected animals are subacute subcutaneous edema, congestion of the jugular veins, and tachycardia with gallop rhythm. A cardiomegaly with dilatation and hypertrophy of all heart chambers, myocardial degeneration, and fibrosis are typical postmortem findings. It was shown that all BDCMP cases reported worldwide traced back to a red factor-carrying Holstein-Friesian bull, ABC Reflection Sovereign. An autosomal recessive mode of inheritance was proposed for BDCMP. Recently, the disease locus was mapped to a 6.7-Mb interval MSBDCMP06-BMS2785 on bovine Chr 18 (BTA18). In the present study the BDCMP locus was fine mapped by using a combined strategy of homozygosity mapping and association study. A BAC contig of 2.9 Mb encompassing the crucial interval was constructed to establish the correct marker order on BTA18. We show that the disease locus is located in a gene-rich interval of 1.0 Mb and is flanked by the microsatellite markers DIK3006 and MSBDCMP51.
Resumo:
BACKGROUND -The value of standard two-dimensional transthoracic echocardiographic (TTE) parameters for risk stratification in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is controversial. METHODS AND RESULTS -We investigated the impact of right ventricular fractional area change (FAC) and tricuspid annulus plane systolic excursion (TAPSE) for prediction of major adverse cardiovascular events (MACE) defined as the occurrence of cardiac death, heart transplantation, survived sudden cardiac death, ventricular fibrillation, sustained ventricular tachycardia or arrhythmogenic syncope. Among 70 patients who fulfilled the 2010 ARVC/D Task Force Criteria and underwent baseline TTE, 37 (53%) patients experienced a MACE during a median follow-up period of 5.3 (IQR 1.8-9.8) years. Average values for FAC, TAPSE, and TAPSE indexed to body surface area (BSA) decreased over time (p=0.03 for FAC, p=0.03 for TAPSE and p=0.01 for TAPSE/BSA, each vs. baseline). In contrast, median right ventricular end-diastolic area (RVEDA) increased (p=0.001 vs. baseline). Based on the results of Kaplan-Meier estimates, the time between baseline TTE and experiencing MACE was significantly shorter for patients with FAC <23% (p<0.001), TAPSE <17mm (p=0.02) or right atrial (RA) short axis/BSA ≥25mm/m(2) (p=0.04) at baseline. A reduced FAC constituted the strongest predictor of MACE (hazard ratio 1.08 per 1% decrease; 95% confidence interval 1.04-1.12; p<0.001) on bivariable analysis. CONCLUSIONS -This long-term observational study indicates that TAPSE and dilation of right-sided cardiac chambers are associated with an increased risk for MACE in ARVC/D patients with advanced disease and a high risk for adverse events. However, FAC is the strongest echocardiographic predictor of adverse outcome in these patients. Our data advocate a role for TTE in risk stratification in patients with ARVC/D, although our results may not be generalizable to lower risk ARVC/D cohorts.
Resumo:
The role of the electrophysiologic (EP) study for risk stratification in patients with arrhythmogenic right ventricular cardiomyopathy is controversial. We investigated the role of inducible sustained monomorphic ventricular tachycardia (SMVT) for the prediction of an adverse outcome (AO), defined as the occurrence of cardiac death, heart transplantation, sudden cardiac death, ventricular fibrillation, ventricular tachycardia with hemodynamic compromise or syncope. Of 62 patients who fulfilled the 2010 Arrhythmogenic Right Ventricular Cardiomyopathy Task Force criteria and underwent an EP study, 30 (48%) experienced an adverse outcome during a median follow-up of 9.8 years. SMVT was inducible in 34 patients (55%), 22 (65%) of whom had an adverse outcome. In contrast, in 28 patients without inducible SMVT, 8 (29%) had an adverse outcome. Kaplan-Meier analysis showed an event-free survival benefit for patients without inducible SMVT (log-rank p = 0.008) with a cumulative survival free of an adverse outcome of 72% (95% confidence interval [CI] 56% to 92%) in the group without inducible SMVT compared to 26% (95% CI 14% to 50%) in the other group after 10 years. The inducibility of SMVT during the EP study (hazard ratio [HR] 2.99, 95% CI 1.23 to 7.27), nonadherence (HR 2.74, 95% CI 1.3 to 5.77), and heart failure New York Heart Association functional class II and III (HR 2.25, 95% CI 1.04 to 4.87) were associated with an adverse outcome on univariate Cox regression analysis. The inducibility of SMVT (HR 2.52, 95% CI 1.03 to 6.16, p = 0.043) and nonadherence (HR 2.34, 95% CI 1.1 to 4.99, p = 0.028) remained as significant predictors on multivariate analysis. This long-term observational data suggest that SMVT inducibility during EP study might predict an adverse outcome in patients with arrhythmogenic right ventricular cardiomyopathy, advocating a role for EP study in risk stratification.
Resumo:
Evaluation of: Noorman M, Hakim S, Kessler E et al. Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. Heart Rhythm 10(3), 412-419 (2013). Arrhythmogenic cardiomyopathy (AC) is a heart muscle disease characterized by a progressive replacement of the ventricular myocardium with adipose and fibrous tissue. This disease is often associated with mutations in genes encoding desmosomal proteins in the majority of patients. Based on results obtained from recent experimental models, a disturbed distribution of gap junction proteins and cardiac sodium channels may also be observed in AC phenotypes, secondary to desmosomal dysfunction. The study from Noorman et al. examined heart sections from patients diagnosed with AC and performed immunohistochemical analyses of N-cadherin, PKP2, PKG, Cx43 and the cardiac sodium channel NaV1.5. Altered expression/distribution of Cx43, PKG and NaV1.5 was found in most cases of patients with AC. The altered expression and/or distribution of NaV1.5 channels in AC hearts may play a mechanistic role in the arrhythmias leading to sudden cardiac death in AC patients. Thus, NaV1.5 should be considered as a supplemental element in the evaluation of risk stratification and management strategies. However, additional experiments are required to clearly understand the mechanisms leading to AC phenotypes.
Resumo:
AIMS:Duchenne muscular dystrophy (DMD) is a muscle disease with serious cardiac complications. Changes in Ca(2+) homeostasis and oxidative stress were recently associated with cardiac deterioration, but the cellular pathophysiological mechanisms remain elusive. We investigated whether the activity of ryanodine receptor (RyR) Ca(2+) release channels is affected, whether changes in function are cause or consequence and which post-translational modifications drive disease progression. METHODS AND RESULTS:Electrophysiological, imaging, and biochemical techniques were used to study RyRs in cardiomyocytes from mdx mice, an animal model of DMD. Young mdx mice show no changes in cardiac performance, but do so after ∼8 months. Nevertheless, myocytes from mdx pups exhibited exaggerated Ca(2+) responses to mechanical stress and 'hypersensitive' excitation-contraction coupling, hallmarks of increased RyR Ca(2+) sensitivity. Both were normalized by antioxidants, inhibitors of NAD(P)H oxidase and CaMKII, but not by NO synthases and PKA antagonists. Sarcoplasmic reticulum Ca(2+) load and leak were unchanged in young mdx mice. However, by the age of 4-5 months and in senescence, leak was increased and load was reduced, indicating disease progression. By this age, all pharmacological interventions listed above normalized Ca(2+) signals and corrected changes in ECC, Ca(2+) load, and leak. CONCLUSION:Our findings suggest that increased RyR Ca(2+) sensitivity precedes and presumably drives the progression of dystrophic cardiomyopathy, with oxidative stress initiating its development. RyR oxidation followed by phosphorylation, first by CaMKII and later by PKA, synergistically contributes to cardiac deterioration.