965 resultados para Hymns, Greek (Classical)
Resumo:
A microscopic theory of equilibrium solvation and solvation dynamics of a classical, polar, solute molecule in dipolar solvent is presented. Density functional theory is used to explicitly calculate the polarization structure around a solvated ion. The calculated solvent polarization structure is different from the continuum model prediction in several respects. The value of the polarization at the surface of the ion is less than the continuum value. The solvent polarization also exhibits small oscillations in space near the ion. We show that, under certain approximations, our linear equilibrium theory reduces to the nonlocal electrostatic theory, with the dielectric function (c(k)) of the liquid now wave vector (k) dependent. It is further shown that the nonlocal electrostatic estimate of solvation energy, with a microscopic c(k), is close to the estimate of linearized equilibrium theories of polar liquids. The study of solvation dynamics is based on a generalized Smoluchowski equation with a mean-field force term to take into account the effects of intermolecular interactions. This study incorporates the local distortion of the solvent structure near the ion and also the effects of the translational modes of the solvent molecules.The latter contribution, if significant, can considerably accelerate the relaxation of solvent polarization and can even give rise to a long time decay that agrees with the continuum model prediction. The significance of these results is discussed.
Resumo:
Like the metal and semiconductor nanoparticles, the melting temperature of free inert-gas nanoparticles decreases with decreasing size. The variation is linear with the inverse of the particle size for large nanoparticles and deviates from the linearity for small nanoparticles. The decrease in the melting temperature is slower for free nanoparticles with non-wetting surfaces, while the decrease is faster for nanoparticles with wetting surfaces. Though the depression of the melting temperature has been reported for inert-gas nanoparticles in porous glasses, superheating has also been observed when the nanoparticles are embedded in some matrices. By using a simple classical approach, the influence of size, geometry and the matrix on the melting temperature of nanoparticles is understood quantitatively and shown to be applicable for other materials. It is also shown that the classical approach can be applied to understand the size-dependent freezing temperature of nanoparticles.
Resumo:
A small-cluster approximation has been used to calculate the activation barriers for the d.c. conductivity in ionic glasses. The main emphasis of this approach is on the importance of the hitherto ignored polarization energy contribution to the total activation energy. For the first time it has been demonstrated that the d.c. conductivity activation energy can be calculated by considering ionic migration to a neighbouring vacancy in a smali cluster of ions consisting of face-sharing anion polyhedra. The activation energies from the model calculations have been compared with the experimental values in the case of highly modified lithium thioborate glasses.
Resumo:
We review work initiated and inspired by Sudarshan in relativistic dynamics, beam optics, partial coherence theory, Wigner distribution methods, multimode quantum optical squeezing, and geometric phases. The 1963 No Interaction Theorem using Dirac's instant form and particle World Line Conditions is recalled. Later attempts to overcome this result exploiting constrained Hamiltonian theory, reformulation of the World Line Conditions and extending Dirac's formalism, are reviewed. Dirac's front form leads to a formulation of Fourier Optics for the Maxwell field, determining the actions of First Order Systems (corresponding to matrices of Sp(2,R) and Sp(4,R)) on polarization in a consistent manner. These groups also help characterize properties and propagation of partially coherent Gaussian Schell Model beams, leading to invariant quality parameters and the new Twist phase. The higher dimensional groups Sp(2n,R) appear in the theory of Wigner distributions and in quantum optics. Elegant criteria for a Gaussian phase space function to be a Wigner distribution, expressions for multimode uncertainty principles and squeezing are described. In geometric phase theory we highlight the use of invariance properties that lead to a kinematical formulation and the important role of Bargmann invariants. Special features of these phases arising from unitary Lie group representations, and a new formulation based on the idea of Null Phase Curves, are presented.
Resumo:
The phase diagram of a hard-sphere fluid in the presence of a random pinning potential is studied analytically and numerically. In the analytic work, replicas are introduced for averaging over the quenched disorder, and the hypernetted chain approximation is used to calculate density correlations in the replicated liquid. The freezing transition of the liquid into a nearly crystalline state is studied using a density-functional approach, and the liquid to glass transition is studied using a phenomenological replica symmetry breaking approach. In the numerical work, local minima of a discretized version of the Ramakrishnan-Yussouff free-energy functional are located and the phase diagram in the density-disorder plane is obtained from an analysis of the relative stability of these minima. Both approaches lead to similar results for the phase diagram. The first-order liquid to crystalline solid transition is found to change to a continuous liquid to glass transition as the strength of the disorder is increased above a threshold value.
Resumo:
The objective of this work is to develop a systematic methodology for describing hand postures and grasps which is independent of the kinematics and geometry of the hand model which in turn can be used for developing a universal referencing scheme. It is therefore necessary that the scheme be general enough to describe the continuum of hand poses. Indian traditional classical dance form, “Bharathanatyam”, uses 28 single handed gestures, called “mudras”. A Mudra can be perceived as a hand posture with a specific pattern of finger configurations. Using modifiers, complex mudras could be constructed from relatively simple mudras. An adjacency matrix is constructed to describe the relationship among mudras. Various mudra transitions can be obtained from the graph associated with this matrix. Using this matrix, a hierarchy of the mudras is formed. A set of base mudras and modifiers are used for describing how one simple posture of hand can be transformed into another relatively complex one. A canonical set of predefined hand postures and modifiers can be used in digital human modeling to develop standard hand posture libraries.
Resumo:
Using the fact the BTZ black hole is a quotient of AdS(3) we show that classical string propagation in the BTZ background is integrable. We construct the flat connection and its monodromy matrix which generates the non-local charges. From examining the general behaviour of the eigen values of the monodromy matrix we determine the set of integral equations which constrain them. These equations imply that each classical solution is characterized by a density function in the complex plane. For classical solutions which correspond to geodesics and winding strings we solve for the eigen values of the monodromy matrix explicitly and show that geodesics correspond to zero density in the complex plane. We solve the integral equations for BMN and magnon like solutions and obtain their dispersion relation. We show that the set of integral equations which constrain the eigen values of the monodromy matrix can be identified with the continuum limit of the Bethe equations of a twisted SL(2, R) spin chain at one loop. The Landau-Lifshitz equations from the spin chain can also be identified with the sigma model equations of motion.
Resumo:
This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general screw systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. The formulation is illustrated with examples of practical manipulators.
Resumo:
An exact classical theory of the motion of a point dipole in a meson field is given which takes into account the effects of the reaction of the emitted meson field. The meson field is characterized by a constant $\chi =\mu /\hslash $ of the dimensions of a reciprocal length, $\mu $ being the meson mass, and as $\chi \rightarrow $ 0 the theory of this paper goes over continuously into the theory of the preceding paper for the motion of a spinning particle in a Maxwell field. The mass of the particle and the spin angular momentum are arbitrary mechanical constants. The field contributes a small finite addition to the mass, and a negative moment of inertia about an axis perpendicular to the spin axis. A cross-section (formula (88 a)) is given for the scattering of transversely polarized neutral mesons by the rotation of the spin of the neutron or proton which should be valid up to energies of 10$^{9}$ eV. For low energies E it agrees completely with the old quantum cross-section, having a dependence on energy proportional to p$^{4}$/E$^{2}$ (p being the meson momentum). At higher energies it deviates completely from the quantum cross-section, which it supersedes by taking into account the effects of radiation reaction on the rotation of the spin. The cross-section is a maximum at E $\sim $ 3$\cdot $5$\mu $, its value at this point being 3 $\times $ 10$^{-26}$ cm.$^{2}$, after which it decreases rapidly, becoming proportional to E$^{-2}$ at high energies. Thus the quantum theory of the interaction of neutrons with mesons goes wrong for E $\gtrsim $ 3$\mu $. The scattering of longitudinally polarized mesons is due to the translational but not the rotational motion of the dipole and is at least twenty thousand times smaller. With the assumption previously made by the present author that the heavy partilesc may exist in states of any integral charge, and in particular that protons of charge 2e and - e may occur in nature, the above results can be applied to charged mesons. Thus transversely polarised mesons should undergo a very big scattering and consequent absorption at energies near 3$\cdot $5$\mu $. Hence the energy spectrum of transversely polarized mesons should fall off rapidly for energies below about 3$\mu $. Scattering plays a relatively unimportant part in the absorption of longitudinally polarized mesons, and they are therefore much more penetrating. The theory does not lead to Heisenberg explosions and multiple processes.
Resumo:
We construct and study classical solutions in Chern-Simons supergravity based on the superalgebra sl(N vertical bar N = 1). The algebra for the N = 3 case is written down explicitly using the fact that it arises as the global part of the super conformal W-3 superalgebra. For this case we construct new classical solutions and study their supersymmetry. Using the algebra we write down the Killing spinor equations and explicitly construct the Killing spinor for conical defects and black holes in this theory. We show that for the general sl(N|N - 1) theory the condition for the periodicity of the Killing spinor can be written in terms of the products of the odd roots of the super algebra and the eigenvalues of the holonomy matrix of the background. Thus the supersymmetry of a given background can be stated in terms of gauge invariant and well defined physical observables of the Chern-Simons theory. We then show that for N >= 4, the sl(N|N - 1) theory admits smooth supersymmetric conical defects.
Resumo:
Background: We highlight an unrecognized physiological role for the Greek key motif, an evolutionarily conserved super-secondary structural topology of the beta gamma-crystallins. These proteins constitute the bulk of the human eye lens, packed at very high concentrations in a compact, globular, short-range order, generating transparency. Congenital cataract (affecting 400,000 newborns yearly worldwide), associated with 54 mutations in beta gamma-crystallins, occurs in two major phenotypes nuclear cataract, which blocks the central visual axis, hampering the development of the growing eye and demanding earliest intervention, and the milder peripheral progressive cataract where surgery can wait. In order to understand this phenotypic dichotomy at the molecular level, we have studied the structural and aggregation features of representative mutations. Methods: Wild type and several representative mutant proteins were cloned, expressed and purified and their secondary and tertiary structural details, as well as structural stability, were compared in solution, using spectroscopy. Their tendencies to aggregate in vitro and in cellulo were also compared. In addition, we analyzed their structural differences by molecular modeling in silico. Results: Based on their properties, mutants are seen to fall into two classes. Mutants A36P, L45PL54P, R140X, and G165fs display lowered solubility and structural stability, expose several buried residues to the surface, aggregate in vitro and in cellulo, and disturb/distort the Greek key motif. And they are associated with nuclear cataract. In contrast, mutants P24T and R77S, associated with peripheral cataract, behave quite similar to the wild type molecule, and do not affect the Greek key topology. Conclusion: When a mutation distorts even one of the four Greek key motifs, the protein readily self-aggregates and precipitates, consistent with the phenotype of nuclear cataract, while mutations not affecting the motif display `native state aggregation', leading to peripheral cataract, thus offering a protein structural rationale for the cataract phenotypic dichotomy ``distort motif, lose central vision''.