936 resultados para Hydraulic fracturing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seepage flow under hydraulic structures provided with intermediate filters has been investigated. The flow through the banks of the canal has been included in the model. Different combinations of intermediate filter and canal width were studied. Different lengths of the floor, differential heads, and depths of the sheet pile driven beneath the floor were also investigated. The introduction of an intermediate filter to the floor of hydraulic structures reduced the uplift force acting on the downstream floor by up to 72%. The maximum uplift reduction occurred when the ratio of the distance of filter location downstream from the cutoff to the differential head was 1. Introducing a second filter in the downstream side resulted in a further reduction in the exit hydraulic gradient and in the uplift force, which reached 90%. The optimum locations of the two filters occurred when the first filter was placed just downstream of the cutoff wall and the second filter was placed nearly at the middistance between the cutoff and the end toe of the floor. The results showed significant differences between the three-dimensional (3D) and the two-dimensional (2D) analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, some limitations associated with modeling the hydraulic conductivity of soil improved with vertical drains are discussed. In addition, some limitations of conventional methodologies for deducing the hydraulic conductivity from oedometer or Rowe cell tests are investigated. An alternative approach for estimating the hydraulic conductivity in soils improved by vertical drains is discussed. This methodology will allow for simpler finite element modeling of consolidation due to vertical drains. The effectiveness of this technique has been demonstrated using a field study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of hydraulic jumps were investigated for three shapes of artificial apparent corrugated beds in a horizontal rectangular flume. Rectangular, triangular, and circular-shaped tire waste corrugated beds were used. Froude number ranged from 2.75 to 4.25. The experimental observations included water surface profiles, bed shear stress, and the hydraulic jump length. Results showed that the shape of the corrugation had relatively insignificant effects on hydraulic jump properties for small Froude numbers. The rectangular, triangular, and circular-shaped corrugated beds reduced the hydraulic jump length by up to 7, 10, and 11%, respectively. The corrugated bed also reduced the tailwater depth by up to 11.5% compared with the smooth bed. The apparent conditions of corrugated bed reduced the hydraulic jump relative length and height by about 0.4 and 0.5, respectively. The circular-shaped tire waste was found to be more effective in reducing the length and depth of the hydraulic jump.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hoje em dia algumas das principais preocupações que se tem na exploração a céu aberto, são a diminuição de custos e a máxima rentabilidade dos equipamentos. São dois aspectos que estão interligados uma vez que a rentabilização dos equipamentos tem como resultado directo a diminuição dos custos de todas as operações inerentes à exploração a céu aberto e, consequentemente, a diminuição dos custos finais de produção. É por essa lógica de pensamento que se procurou perceber e compreender o funcionamento e a rentabilidade dos equipamentos em função dos diferentes estados de fracturação do maciço rochoso. Este estudo foi realizado numa pedreira a norte de Portugal e complementa outros estudos já realizados, com o objectivo de definir características do diagrama de fogo que assegurem a maior rentabilidade da referida exploração. O estudo baseia-se em determinar os rendimentos da pá carregadora calculando os tempos de ciclo, isto é, o tempo que a pá demorou a carregar, a movimentar e a descarregar o material desmontado dos vários rebentamentos. Calculou-se o rendimento do martelo demolidor na fragmentação de grandes blocos, que não entrariam directamente no britador primário, o qual também foi alvo de estudo, nomeadamente, no que diz respeito aos tempos de encravamento e de britagem, onde se tentou correlacionar esses tempos com os vários desmontes e estimou-se o consumo de energia do britador primário utilizando a equação de Bond. Por fim, realizou-se um estudo comparativo do consumo energético entre as várias fases da exploração a céu aberto. Foram realizados levantamentos geológico-geotécnicos de superfícies de descontinuidades recorrendo à técnica de amostragem linear nas superfícies do maciço rochoso para perceber o tipo de fragmentação e orientação do mesmo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese para obtenção do Grau de Doutor em Engenharia Civil, Especialidade Ciências da Construção

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bedrock channels have been considered challenging geomorphic settings for the application of numerical models. Bedrock fluvial systems exhibit boundaries that are typically less mobile than alluvial systems, yet they are still dynamic systems with a high degree of spatial and temporal variability. To understand the variability of fluvial systems, numerical models have been developed to quantify flow magnitudes and patterns as the driving force for geomorphic change. Two types of numerical model were assessed for their efficacy in examining the bedrock channel system consisting of a high gradient portion of the Twenty Mile Creek in the Niagara Region of Ontario, Canada. A one-dimensional (1-D) flow model that utilizes energy equations, HEC RAS, was used to determine velocity distributions through the study reach for the mean annual flood (MAF), the 100-year return flood and the 1,000-year return flood. A two-dimensional (2-D) flow model that makes use of Navier-Stokes equations, RMA2, was created with the same objectives. The 2-D modeling effort was not successful due to the spatial complexity of the system (high slope and high variance). The successful 1 -D model runs were further extended using very high resolution geospatial interpolations inherent to the HEC RAS extension, HEC geoRAS. The modeled velocity data then formed the basis for the creation of a geomorphological analysis that focused upon large particles (boulders) and the forces needed to mobilize them. Several existing boulders were examined by collecting detailed measurements to derive three-dimensional physical models for the application of fluid and solid mechanics to predict movement in the study reach. An imaginary unit cuboid (1 metre by 1 metre by 1 metre) boulder was also envisioned to determine the general propensity for the movement of such a boulder through the bedrock system. The efforts and findings of this study provide a standardized means for the assessment of large particle movement in a bedrock fluvial system. Further efforts may expand upon this standardization by modeling differing boulder configurations (platy boulders, etc.) at a high level of resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Survey map of the Second Welland Canal created by the Welland Canal Company showing the Canal along the eastern edge of the Town of St. Catharines. Identified structures associated with the Canal include Lock 7, Lock House Lot, and the towing path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include bridges, streets, and roads (ex. Queenston Road, St. Catharines Macdamized Road and Suspension Bridge), a hydraulic race, and the Hydraulic Aqueduct. Properties and property owners of note are: Concession 7 Lots 12, 13, and 14, M. Bryant, Mrs. Soper, J. Capner, O. Phelps, P. Marren, Mrs. Parnell, J. Carty, Mrs. Ward, and J. Goodenew.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes benchmark testing of six two-dimensional (2D) hydraulic models (DIVAST, DIVASTTVD, TUFLOW, JFLOW, TRENT and LISFLOOD-FP) in terms of their ability to simulate surface flows in a densely urbanised area. The models are applied to a 1·0 km × 0·4 km urban catchment within the city of Glasgow, Scotland, UK, and are used to simulate a flood event that occurred at this site on 30 July 2002. An identical numerical grid describing the underlying topography is constructed for each model, using a combination of airborne laser altimetry (LiDAR) fused with digital map data, and used to run a benchmark simulation. Two numerical experiments were then conducted to test the response of each model to topographic error and uncertainty over friction parameterisation. While all the models tested produce plausible results, subtle differences between particular groups of codes give considerable insight into both the practice and science of urban hydraulic modelling. In particular, the results show that the terrain data available from modern LiDAR systems are sufficiently accurate and resolved for simulating urban flows, but such data need to be fused with digital map data of building topology and land use to gain maximum benefit from the information contained therein. When such terrain data are available, uncertainty in friction parameters becomes a more dominant factor than topographic error for typical problems. The simulations also show that flows in urban environments are characterised by numerous transitions to supercritical flow and numerical shocks. However, the effects of these are localised and they do not appear to affect overall wave propagation. In contrast, inertia terms are shown to be important in this particular case, but the specific characteristics of the test site may mean that this does not hold more generally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a numerical method to derive the Darcy- Weisbach friction coefficient for overland flow under partial inundation of surface roughness. To better account for the variable influence of roughness with varying levels of emergence, we model the flow over a network which evolves as the free surface rises. This network is constructed using a height numerical map, based on surface roughness data, and a discrete geometry skeletonization algorithm. By applying a hydraulic model to the flows through this network, local heads, velocities, and Froude and Reynolds numbers over the surface can be estimated. These quantities enable us to analyze the flow and ultimately to derive a bulk friction factor for flow over the entire surface which takes into account local variations in flow quantities. Results demonstrate that although the flow is laminar, head losses are chiefly inertial because of local flow disturbances. The results also emphasize that for conditions of partial inundation, flow resistance varies nonmonotonically but does generally increase with progressive roughness inundation.