895 resultados para Human Parietal Cortex


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thiazolidinediones (TZDs) such as pioglitazone and rosiglitazone are widely used as insulin sensitizers in the treatment of type 2 diabetes. In diabetic women with polycystic ovary syndrome, treatment with pioglitazone or rosiglitazone improves insulin resistance and hyperandrogenism, but the mechanism by which TZDs down-regulate androgen production is unknown. Androgens are synthesized in the human gonads as well as the adrenals. We studied the regulation of androgen production by analyzing the effect of pioglitazone and rosiglitazone on steroidogenesis in human adrenal NCI-H295R cells, an established in vitro model of steroidogenesis of the human adrenal cortex. Both TZDs changed the steroid profile of the NCI-H295R cells and inhibited the activities of P450c17 and 3betaHSDII, key enzymes of androgen biosynthesis. Pioglitazone but not rosiglitazone inhibited the expression of the CYP17 and HSD3B2 genes. Likewise, pioglitazone repressed basal and 8-bromo-cAMP-stimulated activities of CYP17 and HSD3B2 promoter reporters in NCI-H295R cells. However, pioglitazone did not change the activity of a cAMP-responsive luciferase reporter, indicating that it does not influence cAMP/protein kinase A/cAMP response element-binding protein pathway signaling. Although peroxisome proliferator-activated receptor gamma (PPARgamma) is the nuclear receptor for TZDs, suppression of PPARgamma by small interfering RNA technique did not alter the inhibitory effect of pioglitazone on CYP17 and HSD3B2 expression, suggesting that the action of pioglitazone is independent of PPARgamma. On the other hand, treatment of NCI-H295R cells with mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) enhanced promoter activity and expression of CYP17. This effect was reversed by pioglitazone treatment, indicating that the MEK/ERK signaling pathway plays a role in regulating androgen biosynthesis by pioglitazone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CONTEXT: A characteristic feature of borderline personality disorder (BPD) is self-injurious behavior in conjunction with stress-induced reduction of pain perception. Reduced pain sensitivity has been experimentally confirmed in patients with BPD, but the neural correlates of antinociceptive mechanisms in BPD are unknown. We predicted that heat stimuli in patients with BPD would activate brain areas concerned with cognitive and emotional evaluation of pain. OBJECTIVE: To assess the psychophysical properties and neural correlates of altered pain processing in patients with BPD. DESIGN: Case-control study. SETTING: A university hospital. PARTICIPANTS: Twelve women with BPD and self-injurious behavior and 12 age-matched control subjects. INTERVENTIONS: Psychophysical assessment and blood oxygen level-dependent functional magnetic resonance imaging during heat stimulation with fixed-temperature heat stimuli and individual-temperature stimuli adjusted for equal subjective pain in all the participants. MAIN OUTCOME MEASURE: Blood oxygen level-dependent functional magnetic resonance imaging signal changes during heat pain stimulation. RESULTS: Patients with BPD had higher pain thresholds and smaller overall volumes of activity than controls in response to identical heat stimuli. When the stimulus temperature was individually adjusted for equal subjective pain level, overall volumes of activity were similar, although regional patterns differed significantly. Patient response was greater in the dorsolateral prefrontal cortex and smaller in the posterior parietal cortex. Pain also produced neural deactivation in the perigenual anterior cingulate gyrus and the amygdala in patients with BPD. CONCLUSION: The interaction between increased pain-induced response in the dorsolateral prefrontal cortex and deactivation in the anterior cingulate and the amygdala is associated with an antinociceptive mechanism in patients with BPD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

P300 is an event-related potential that is elicited by an oddball paradigm. In several neuropsychiatric diseases, differences in latencies and amplitude compared to healthy subjects have been reported. Because of its clinical significance, several investigations have tried to elucidate the intracranial origins of the P300 component. In the present study we could demonstrate a network of P300 generators. Investigated were 15 healthy subjects with an acoustical oddball paradigm within a fMRI block design, which enabled us to exclude attention or acoustical processing effects. The inferior and middle frontal, superior temporal, lower parietal cortex, the insula and the anterior cingulum were significantly activated symmetrical in both hemispheres.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adrenal aldosterone production, the major regulator of salt and water retention, is discussed with respect to hypertensive diseases. Physiological aldosterone production is tightly regulated, either stimulated or inhibited, in the adrenal zona glomerulosa by both circulating factors and/or by locally derived endothelial factors. Arterial hypertension caused by volume overload is the leading clinical symptom indicating increased mineralocorticoid hormones. Excessive aldosterone production is seen in adenomatous disease of the adrenals. The balance between stimulatory/proliferative and antagonistic signaling is disturbed by expression of altered receptor subtypes in the adenomas. Increased aldosterone production without a detectable adenoma is the most frequent form of primary aldosteronism. Both increased sensitivity to agonistic signals and activating polymorphisms within the aldosterone synthase gene (CYP11B2) have been associated with excessive aldosterone production. 17alpha-Hydroxylase deficiency and glucocorticoidremediable aldosteronism can also cause excessive mineralocorticoid synthesis. In contrast, the severe form of pregnancy-induced hypertension, preeclampsia, is characterized by a compromised volume expansion in the presence of inappropriately low aldosterone levels. Initial evidence suggests that compromised CYP11B2 is causative, and that administration of NaCl lowered blood pressure in pregnant patients with low aldosterone availability due to a loss of function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interhemispheric imbalance is discussed as a pathophysiological mechanism in visuospatial neglect. It is suggested that after a lesion of the right hemisphere the mutual transcallosal inhibition is impaired, resulting in an increased activity of the left hemisphere. We investigated the interhemispheric balance of attention in healthy subjects by using a free visual exploration task and by interfering with the neural activity of the posterior parietal cortex (PPC) of either hemisphere using an inhibitory transcranial magnetic stimulation routine with theta burst stimulation (TBS). Subjects explored colour photographs of real-life scenes presented on a computer screen under four conditions: (i) without TBS; (ii) after TBS over the right PPC; (iii) after TBS over the left PPC; and (iv) after TBS over the right PPC and, after the first half of the task, over the left PPC. Eye movements were measured, and distribution of mean cumulative fixation duration over screen halves was analyzed. TBS over the right PPC resulted in a significant rightward shift of mean cumulative fixation duration of approximately 30 min. The shift could be reversed when a subsequent train of TBS was applied over the left PPC. However, left PPC stimulation alone had no significant effect on visual exploration behaviour. The present study shows that the effect of TBS on the PPC depends on which hemisphere is stimulated and on the state of the contralateral homologue area. These findings are in accordance with the predictions of the interhemispheric rivalry model in neglect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Disturbances of the motor and sensory system as well as an alteration of the preparation of movements have been reported to play a role in the pathogenesis of dystonias. However, it is unclear whether higher aspects of cortical – like cognitive – functions are also involved. Recently, the NoGo-anteriorization (NGA) elicited with a visual continuous performance test (CPT) during recording of a 21-channel electroencephalogram has been proposed as an electrophysiological standard-index for cognitive response control. The NGA consists of a more anterior location of the positive area of the brain electrical field associated with the inhibition (NoGo-condition) compared with that of the execution (Go-condition) of a prepared motor response in the CPT. This response control paradigm was applied in 16 patients with writer’s cramp (WC) and 14 age matched healthy controls. Topographical analysis of the associated event-related potentials revealed a significant (P < 0.05) NGA effect for both patients and controls. Moreover, patients with WC showed a significantly higher global field power value (P < 0.05) in the Go-condition and a significantly higher difference-amplitude (P < 0.05) in the NoGo-condition. A source location analysis with the low resolution electromagnetic tomography (LORETA) method demonstrated a hypoactivity for the Go-condition in the parietal cortex of the right hemisphere and a hyperactivity in the NoGo-condition in the left parietal cortex in patients with WC compared with healthy controls. These results indicate an altered response control in patients with WC in widespread cortical brain areas and therefore support the hypothesis that the pathogenesis of WC is not restricted to a pure sensory-motor dysfunction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transcranial magnetic stimulation (TMS) was used to study visuospatial attention processing in ten healthy volunteers. In a forced choice recognition task the subjects were confronted with two symbols simultaneously presented during 120 ms at random positions, one in the left and the other in the right visual field. The subject had to identify the presented pattern out of four possible combinations and to press the corresponding response key within 2 s. Double-pulse TMS (dTMS) with a 100-ms interstimulus interval (ISI) and an intensity of 80% of the stimulator output (corresponding to 110-120% of the motor threshold) was applied by a non-focal coil over the right or left posterior parietal cortex (PPC, corresponding to P3/P4 of the international 10-20 system) at different time intervals after onset of the visual stimulus (starting at 120 ms, 270 ms and 520 ms). Double-pulse TMS over the right PPC starting at 270 ms led to a significant increase in percentage of errors in the contralateral, left visual field (median: 23% with TMS vs 13% without TMS, P=0.0025). TMS applied earlier or later showed no effect. Furthermore, no significant increase in contra- or ipsilateral percentage of errors was found when the left parietal cortex was stimulated with the same timing. These data indicate that: (1) parietal influence on visuospatial attention is mainly controlled by the right lobe since the same stimulation over the left parietal cortex had no significant effect, and (2) there is a vulnerable time window to disturb this cortical process, since dTMS had a significant effect on the percentage of errors in the contralateral visual hemifield only when applied 270 ms after visual stimulus presentation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traumatic brain injury results from a primary insult and secondary events that together result in tissue injury. This primary injury occurs at the moment of impact and damage can include scalp laceration, skull fraction, cerebral contusions and lacerations as well as intracranial hemorrhage. Following the initial insult, a delayed response occurs and is characterized by hypoxia, ischemia, cerebral edema, and infection. During secondary brain injury, a series of neuroinflammatory events are triggered that can produce additional damage but may also help to protect nervous tissue from invading pathogens and help to repair the damaged tissue. Brain microglia and astrocytes become activated and migrate to the site of injury where these cells secrete immune mediators such as cytokines and chemokines. CC-chemokine receptor 5 (CCR5) is a member of the CC chemokine receptor family of seven transmembrane G protein coupled receptors. CCR5 is expressed in the immune system and is found in monocytes, leukoctyes, memory T cells, and immature dendritic cells. Upon binding to its ligands, CCR5 functions in the chemotaxis of these immune cells to the site of inflammation. In the CNS, CCR5 and its ligands are expressed in multiple cell types. In this study, I investigated whether CCR5 expression is altered in brain after traumatic brain injury. I examined the time course of CCR5 protein expression in cortex and hippocampus using quantitative western analysis of tissues from injured rat brain after mild impact injury. In addition, I also investigated the cellular localization of CCR5 before and after brain injury using confocal microscopy. I have observed that after brain injury CCR5 is upregulated in a time dependent manner in neurons of the parietal cortex and hippocampus. The absence of CCR5 expression in microglia and its delayed expression in neurons after injury suggests a role for CCR5 in neuronal survival after injury.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traumatic brain injury results from a primary insult and secondary events that together result in tissue injury. This primary injury occurs at the moment of impact and damage can include scalp laceration, skull fraction, cerebral contusions and lacerations as well as intracranial hemorrhage. Following the initial insult, a delayed response occurs and is characterized by hypoxia, ischemia, cerebral edema, and infection. During secondary brain injury, a series of neuroinflammatory events are triggered that can produce additional damage but may also help to protect nervous tissue from invading pathogens and help to repair the damaged tissue. Brain microglia and astrocytes become activated and migrate to the site of injury where these cells secrete immune mediators such as cytokines and chemokines. CC-chemokine receptor 5 (CCR5) is a member of the CC chemokine receptor family of seven transmembrane G protein coupled receptors. CCR5 is expressed in the immune system and is found in monocytes, leukoctyes, memory T cells, and immature dendritic cells. Upon binding to its ligands, CCR5 functions in the chemotaxis of these immune cells to the site of inflammation. In the CNS, CCR5 and its ligands are expressed in multiple cell types. In this study, I investigated whether CCR5 expression is altered in brain after traumatic brain injury. I examined the time course of CCR5 protein expression in cortex and hippocampus using quantitative western analysis of tissues from injured rat brain after mild impact injury. In addition, I also investigated the cellular localization of CCR5 before and after brain injury using confocal microscopy. I have observed that after brain injury CCR5 is upregulated in a time dependent manner in neurons of the parietal cortex and hippocampus. The absence of CCR5 expression in microglia and its delayed expression in neurons after injury suggests a role for CCR5 in neuronal survival after injury.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the antisaccade task, subjects are requested to suppress a reflexive saccade towards a visual target and to perform a saccade towards the opposite side. In addition, in order to reproduce an accurate saccadic amplitude, the visual saccade vector (i.e., the distance between a central fixation point and the peripheral target) must be exactly inverted from one visual hemifield to the other. Results from recent studies using a correlational approach (i.e., fMRI, MEG) suggest that not only the posterior parietal cortex (PPC) but also the frontal eye field (FEF) might play an important role in such a visual vector inversion process. In order to assess whether the FEF contributes to visual vector inversion, we applied an interference approach with continuous theta burst stimulation (cTBS) during a memory-guided antisaccade task. In 10 healthy subjects, one train of cTBS was applied over the right FEF prior to a memory-guided antisaccade task. In comparison to the performance without stimulation or with sham stimulation, cTBS over the right FEF induced a hypometric gain for rightward but not leftward antisaccades. These results obtained with an interference approach confirm that the FEF is also involved in the process of visual vector inversion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Meditation is a self-induced and willfully initiated practice that alters the state of consciousness. The meditation practice of Zazen, like many other meditation practices, aims at disregarding intrusive thoughts while controlling body posture. It is an open monitoring meditation characterized by detached moment-to-moment awareness and reduced conceptual thinking and self-reference. Which brain areas differ in electric activity during Zazen compared to task-free resting? Since scalp electroencephalography (EEG) waveforms are reference-dependent, conclusions about the localization of active brain areas are ambiguous. Computing intracerebral source models from the scalp EEG data solves this problem. In the present study, we applied source modeling using low resolution brain electromagnetic tomography (LORETA) to 58-channel scalp EEG data recorded from 15 experienced Zen meditators during Zazen and no-task resting. Zazen compared to no-task resting showed increased alpha-1 and alpha-2 frequency activity in an exclusively right-lateralized cluster extending from prefrontal areas including the insula to parts of the somatosensory and motor cortices and temporal areas. Zazen also showed decreased alpha and beta-2 activity in the left angular gyrus and decreased beta-1 and beta-2 activity in a large bilateral posterior cluster comprising the visual cortex, the posterior cingulate cortex and the parietal cortex. The results include parts of the default mode network and suggest enhanced automatic memory and emotion processing, reduced conceptual thinking and self-reference on a less judgmental, i.e., more detached moment-to-moment basis during Zazen compared to no-task resting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE To compare EEG power spectra and LORETA-computed intracortical activity between Alzheimer's disease (AD) patients and healthy controls, and to correlate the results with cognitive performance in the AD group. METHODS Nineteen channel resting EEG was recorded in 21 mild to moderate AD patients and in 23 controls. Power spectra and intracortical LORETA tomography were computed in seven frequency bands and compared between groups. In the AD patients, the EEG results were correlated with cognitive performance (Mini Mental State Examination, MMSE). RESULTS AD patients showed increased power in EEG delta and theta frequency bands, and decreased power in alpha2, beta1, beta2 and beta3. LORETA specified that increases and decreases of power affected different cortical areas while largely sparing prefrontal cortex. Delta power correlated negatively and alpha1 power positively with the AD patients' MMSE scores; LORETA tomography localized these correlations in left temporo-parietal cortex. CONCLUSIONS The non-invasive EEG method of LORETA localized pathological cortical activity in our mild to moderate AD patients in agreement with the literature, and yielded striking correlations between EEG delta and alpha1 activity and MMSE scores in left temporo-parietal cortex. SIGNIFICANCE The present data support the hypothesis of an asymmetrical progression of the Alzheimer's disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We develop statistical procedures for estimating shape and orientation of arbitrary three-dimensional particles. We focus on the case where particles cannot be observed directly, but only via sections. Volume tensors are used for describing particle shape and orientation, and we derive stereological estimators of the tensors. These estimators are combined to provide consistent estimators of the moments of the so-called particle cover density. The covariance structure associated with the particle cover density depends on the orientation and shape of the particles. For instance, if the distribution of the typical particle is invariant under rotations, then the covariance matrix is proportional to the identity matrix. We develop a non-parametric test for such isotropy. A flexible Lévy-based particle model is proposed, which may be analysed using a generalized method of moments in which the volume tensors enter. The developed methods are used to study the cell organization in the human brain cortex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Visual neglect is considerably exacerbated by increases in visual attentional load. These detrimental effects of attentional load are hypothesised to be dependent on an interplay between dysfunctional inter-hemispheric inhibitory dynamics and load-related modulation of activity in cortical areas such as the posterior parietal cortex (PPC). Continuous Theta Burst Stimulation (cTBS) over the contralesional PPC reduces neglect severity. It is unknown, however, whether such positive effects also operate in the presence of the detrimental effects of heightened attentional load. Here, we examined the effects of cTBS on neglect severity in overt visual search (i.e., with eye movements), as a function of high and low visual attentional load conditions. Performance was assessed on the basis of target detection rates and eye movements, in a computerised visual search task and in two paper-pencil tasks. cTBS significantly ameliorated target detection performance, independently of attentional load. These ameliorative effects were significantly larger in the high than the low load condition, thereby equating target detection across both conditions. Eye movement analyses revealed that the improvements were mediated by a redeployment of visual fixations to the contralesional visual field. These findings represent a substantive advance, because cTBS led to an unprecedented amelioration of overt search efficiency that was independent of visual attentional load.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To show the results of a device that generates automated olfactory stimuli suitable for functional magnetic resonance imaging (fMRI) experiments. Material and methods: Te n normal volunteers, 5 women and 5 men, were studied. The system allows the programming of several sequences, providing the capability to synchronise the onset of odour presentation with acquisition by a trigger signal of the MRI scanner. The olfactometer is a device that allows selection of the odour, the event paradigm, the time of stimuli and the odour concentration. The paradigm used during fMRI scanning consisted of 15-s blocks. The odorant event took 2 s with butanol, mint and coffee. Results: We observed olfactory activity in the olfactory bulb, entorhinal cortex (4%), amygdala (2.5%) and temporo-parietal cortex, especially in the areas related to emotional integration. Conclusions: The device has demonstrated its effectiveness in stimulating olfactory areas and its capacity to adapt to fMRI equipment.RESUMEN Objetivo: Mostrar los resultados del olfatómetro capaz de generar tareas olfativas en un equipo de resonancia magnética funcional (fMRI). Material y métodos: Estudiamos 10 sujetos normales: 5 varones y 5 mujeres. El olfatómetro está dise ̃ nado para que el estímulo que produce se sincronice con el equipo de fMRI mediante la se ̃ nal desencadenante que suministra el propio equipo. El olfatómetro es capaz de: selec- cionar el olor, secuenciar los distintos olores, programar la frecuencia y duración de los olores y controlar la intensidad del olor. El paradigma utilizado responde a un dise ̃ no de activación asociada a eventos, en el que la duración del bloque de activación y de reposo es de 15 s. La duración del estímulo olfativo (butanol, menta o café) es de 2 segundos, durante toda la serie que consta de 9 ciclos. Resultados: Se ha observado reactividad (contraste BOLD) en las diferentes áreas cerebrales involucradas en las tareas olfativas: bulbo olfatorio, córtex entorrinal (4%), amigdala (2,5%) y córtex temporoparietal. Las áreas relacionadas con integración de las emociones tienen una reactividad mayor. Conclusiones: El dispositivo propuesto nos permite controlar de forma automática y sincronizada los olores necesarios para estudiar la actividad de las áreas olfatorias cerebrales mediante fMRI.