972 resultados para Human Degradation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfite oxidase catalyzes the terminal reaction in the degradation of sulfur amino acids. Genetic deficiency of sulfite oxidase results in neurological abnormalities and often leads to death at an early age. The mutation in the sulfite oxidase gene responsible for sulfite oxidase deficiency in a 5-year-old girl was identified by sequence analysis of cDNA obtained from fibroblast mRNA to be a guanine to adenine transition at nucleotide 479 resulting in the amino acid substitution of Arg-160 to Gln. Recombinant protein containing the R160Q mutation was expressed in Escherichia coli, purified, and characterized. The mutant protein contained its full complement of molybdenum and heme, but exhibited 2% of native activity under standard assay conditions. Absorption spectroscopy of the isolated molybdenum domains of native sulfite oxidase and of the R160Q mutant showed significant differences in the 480- and 350-nm absorption bands, suggestive of altered geometry at the molybdenum center. Kinetic analysis of the R160Q protein showed an increase in Km for sulfite combined with a decrease in kcat resulting in a decrease of nearly 1,000-fold in the apparent second-order rate constant kcat/Km. Kinetic parameters for the in vitro generated R160K mutant were found to be intermediate in value between those of the native protein and the R160Q mutant. Native sulfite oxidase was rapidly inactivated by phenylglyoxal, yielding a modified protein with kinetic parameters mimicking those of the R160Q mutant. It is proposed that Arg-160 attracts the anionic substrate sulfite to the binding site near the molybdenum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A human p53 homologue, p63 (p40/p51/p73L/CUSP) that maps to the chromosomal region 3q27–29 was found to produce a variety of transcripts that encode DNA-binding proteins with and without a trans-activation domain (TA- or ΔN-, respectively). The p63 gene locus was found to be amplified in squamous cell carcinoma, and overexpression of ΔNp63 (p40) led to increased growth of transformed cells in vitro and in vivo. Moreover, p63-null mice displayed abnormal epithelial development and germ-line human mutations were found to cause ectodermal dysplasia. We now demonstrate that certain p63 isotypes form complexes with p53. p53 mutations R175H or R248W abolish the association of p53 with p63, whereas V143A or R273H has no effect. Deletion studies suggest that the DNA-binding domains of both p53 and p63 mediate the association. Overexpression of wild type but not mutant (R175H) p53 results in the caspase-dependent degradation of certain ΔNp63 proteins (p40 and ΔNp63α). The association between p53 and ΔNp63 supports a previously unrecognized role for p53 in regulation of ΔNp63 stability. The ability of p53 to mediate ΔNp63 degradation may balance the capacity of ΔNp63 to accelerate tumorigenesis or to induce epithelial proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DETA-NONOate, a nitric oxide (NO) donor, induced cytostasis in the human breast cancer cells MDA-MB-231, and the cells were arrested in the G1 phase of the cell cycle. This cytostatic effect of the NO donor was associated with the down-regulation of cyclin D1 and hypophosphorylation of the retinoblastoma protein. No changes in the levels of cyclin E or the catalytic partners of these cyclins, CDK2, CDK4, or CDK6, were observed. This NO-induced cytostasis and decrease in cyclin D1 was reversible for up to 48 h of DETA-NONOate (1 mM) treatment. DETA-NONOate (1 mM) produced a steady-state concentration of 0.5 μM of NO over a 24-h period. Synchronized population of the cells exposed to DETA-NONOate remained arrested at the G1 phase of the cell cycle whereas untreated control cells progressed through the cell cycle after serum stimulation. The cells arrested at the G1 phase after exposure to the NO donor had low cyclin D1 levels compared with the control cells. The levels of cyclin E and CDK4, however, were similar to the control cells. The decline in cyclin D1 protein preceded the decrease of its mRNA. This decline of cyclin D1 was due to a decrease in its synthesis induced by the NO donor and not due to an increase in its degradation. We conclude that down-regulation of cyclin D1 protein by DETA-NONOate played an important role in the cytostasis and arrest of these tumor cells in the G1 phase of the cell cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origin and role of IL-17, a T-cell derived cytokine, in cartilage and bone destruction during rheumatoid arthritis (RA) remain to be clarified. In human ex vivo models, addition of IL-17 enhanced IL-6 production and collagen destruction, and inhibited collagen synthesis by RA synovium explants. On mouse cartilage, IL-17 enhanced cartilage proteoglycan loss and inhibited its synthesis. On human RA bone explants, IL-17 also increased bone resorption and decreased formation. Addition of IL-1 in these conditions increased the effect of IL-17. Blocking of bone-derived endogenous IL-17 with specific inhibitors resulted in a protective inhibition of bone destruction. Conversely, intra-articular administration of IL-17 into a normal mouse joint induced cartilage degradation. In conclusion, the contribution of IL-17 derived from synovium and bone marrow T cells to joint destruction suggests the control of IL-17 for the treatment of RA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human brm (hbrm) protein (homologue of the Drosophila melanogaster brahma and Saccharomyces cervisiae SNF-2 proteins) is part of a polypeptide complex believed to regulate chromatin conformation. We have shown that the hbrm protein is cleaved in NB4 leukemic cells after induction of apoptosis by UV-irradiation, DNA damaging agents, or staurosporine. Because hbrm is found only in the nucleus, we have investigated the nature of the proteases that may regulate the degradation of this protein during apoptosis. In an in vitro assay, the hbrm protein could not be cleaved by caspase-3, -7, or -6, the “effector” caspases generally believed to carry out the cleavage of nuclear protein substrates. In contrast, we find that cathepsin G, a granule enzyme found in NB4 cells, cleaves hbrm in a pattern similar to that observed in vivo during apoptosis. In addition, a peptide inhibitor of cathepsin G blocks hbrm cleavage during apoptosis but does not block activation of caspases or cleavage of the nuclear protein polyADP ribose polymerase (PARP). Although localized in granules and in the Golgi complex in untreated cells, cathepsin G becomes diffusely distributed during apoptosis. Cleavage by cathepsin G removes a 20-kDa fragment containing a bromodomain from the carboxyl terminus of hbrm. This cleavage disrupts the association between hbrm and the nuclear matrix; the 160-kDa hbrm cleavage fragment is less tightly associated with the nuclear matrix than full-length hbrm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The poly(A)-binding protein (PABP) recognizes the 3′ mRNA poly(A) tail and plays an essential role in eukaryotic translation initiation and mRNA stabilization/degradation. PABP is a modular protein, with four N-terminal RNA-binding domains and an extensive C terminus. The C-terminal region of PABP is essential for normal growth in yeast and has been implicated in mediating PABP homo-oligomerization and protein–protein interactions. A small, proteolytically stable, highly conserved domain has been identified within this C-terminal segment. Remarkably, this domain is also present in the hyperplastic discs protein (HYD) family of ubiquitin ligases. To better understand the function of this conserved region, an x-ray structure of the PABP-like segment of the human HYD protein has been determined at 1.04-Å resolution. The conserved domain adopts a novel fold resembling a right-handed supercoil of four α-helices. Sequence profile searches and comparative protein structure modeling identified a small ORF from the Arabidopsis thaliana genome that encodes a structurally similar but distantly related PABP/HYD domain. Phylogenetic analysis of the experimentally determined (HYD) and homology modeled (PABP) protein surfaces revealed a conserved feature that may be responsible for binding to a PABP interacting protein, Paip1, and other shared interaction partners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition-state theory has led to the design of Immucillin-H (Imm-H), a picomolar inhibitor of purine nucleoside phosphorylase (PNP). In humans, PNP is the only route for degradation of deoxyguanosine, and genetic deficiency of this enzyme leads to profound T cell-mediated immunosuppression. This study reports the biological effects and mechanism of action of Imm-H on malignant T cell lines and on normal activated human peripheral T cells. Imm-H inhibits the growth of malignant T cell leukemia lines with the induction of apoptosis. Imm-H also inhibits activated normal human T cells after antigenic stimulation in vitro. However, Imm-H did not inhibit malignant B cells, colon cancer cell lines, or normal human nonstimulated T cells, demonstrating the selective activity of Imm-H. The effects on leukemia cells were mediated by the cellular phosphorylation of deoxyguanosine and the accumulation of dGTP, an inhibitor of ribonucleotide diphosphate reductase. Cells were protected from the toxic effects of Imm-H when deoxyguanosine was absent or when deoxycytidine was present. Guanosine incorporation into nucleic acids was selectively blocked by Imm-H with no effect on guanine, adenine, adenosine, or deoxycytidine incorporation. Imm-H may have clinical potential for treatment of human T cell leukemia and lymphoma and for other diseases characterized by abnormal activation of T lymphocytes. The design of Imm-H from an enzymatic transition-state analysis exemplifies a powerful approach for developing high-affinity enzyme inhibitors with pharmacologic activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skp2 is a member of the F-box family of substrate-recognition subunits of SCF ubiquitin–protein ligase complexes that has been implicated in the ubiquitin-mediated degradation of several key regulators of mammalian G1 progression, including the cyclin-dependent kinase inhibitor p27, a dosage-dependent tumor suppressor protein. In this study, we examined Skp2 and p27 protein expression by immunohistochemistry in normal oral epithelium and in different stages of malignant oral cancer progression, including dysplasia and oral squamous cell carcinoma. We found that increased levels of Skp2 protein are associated with reduced p27 in a subset of oral epithelial dysplasias and carcinomas compared with normal epithelial controls. Tumors with high Skp2 (>20% positive cells) expression invariably showed reduced or absent p27 and tumors with high p27 (>20% positive cells) expression rarely showed Skp2 positivity. Increased Skp2 protein levels were not always correlated with increased cell proliferation (assayed by Ki-67 staining), suggesting that alterations of Skp2 may contribute to the malignant phenotype without affecting proliferation. Skp2 protein overexpression may lead to accelerated p27 proteolysis and contribute to malignant progression from dysplasia to oral epithelial carcinoma. Moreover, we also demonstrate that Skp2 has oncogenic potential by showing that Skp2 cooperates with H-RasG12V to malignantly transform primary rodent fibroblasts as scored by colony formation in soft agar and tumor formation in nude mice. The observations that Skp2 can mediate transformation and is up-regulated during oral epithelial carcinogenesis support a role for Skp2 as a protooncogene in human tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many persistent viruses have evolved the ability to subvert MHC class I antigen presentation. Indeed, human cytomegalovirus (HCMV) encodes at least four proteins that down-regulate cell-surface expression of class I. The HCMV unique short (US)2 glycoprotein binds newly synthesized class I molecules within the endoplasmic reticulum (ER) and subsequently targets them for proteasomal degradation. We report the crystal structure of US2 bound to the HLA-A2/Tax peptide complex. US2 associates with HLA-A2 at the junction of the peptide-binding region and the α3 domain, a novel binding surface on class I that allows US2 to bind independently of peptide sequence. Mutation of class I heavy chains confirms the importance of this binding site in vivo. Available data on class I-ER chaperone interactions indicate that chaperones would not impede US2 binding. Unexpectedly, the US2 ER-luminal domain forms an Ig-like fold. A US2 structure-based sequence alignment reveals that seven HCMV proteins, at least three of which function in immune evasion, share the same fold as US2. The structure allows design of further experiments to determine how US2 targets class I molecules for degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The huntingtin exon 1 proteins with a polyglutamine repeat in the pathological range (51 or 83 glutamines), but not with a polyglutamine tract in the normal range (20 glutamines), form aggresome-like perinuclear inclusions in human 293 Tet-Off cells. These structures contain aggregated, ubiquitinated huntingtin exon 1 protein with a characteristic fibrillar morphology. Inclusion bodies with truncated huntingtin protein are formed at centrosomes and are surrounded by vimentin filaments. Inhibition of proteasome activity resulted in a twofold increase in the amount of ubiquitinated, SDS-resistant aggregates, indicating that inclusion bodies accumulate when the capacity of the ubiquitin–proteasome system to degrade aggregation-prone huntingtin protein is exhausted. Immunofluorescence and electron microscopy with immunogold labeling revealed that the 20S, 19S, and 11S subunits of the 26S proteasome, the molecular chaperones BiP/GRP78, Hsp70, and Hsp40, as well as the RNA-binding protein TIA-1, the potential chaperone 14–3-3, and α-synuclein colocalize with the perinuclear inclusions. In 293 Tet-Off cells, inclusion body formation also resulted in cell toxicity and dramatic ultrastructural changes such as indentations and disruption of the nuclear envelope. Concentration of mitochondria around the inclusions and cytoplasmic vacuolation were also observed. Together these findings support the hypothesis that the ATP-dependent ubiquitin–proteasome system is a potential target for therapeutic interventions in glutamine repeat disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fen1 or maturation factor 1 is a 5'-3' exonuclease essential for the degradation of the RNA primer-DNA junctions at the 5' ends of immature Okazaki fragments prior to their ligation into a continuous DNA strand. The gene is also necessary for repair of damaged DNA in yeast. We report that human proliferating-cell nuclear antigen (PCNA) associates with human Fen1 with a Kd of 60 nM and an apparent stoichiometry of three Fen1 molecules per PCNA trimer. The Fen1-PCNA association is seen in cell extracts without overexpression of either partner and is mediated by a basic region at the C terminus of Fen1. Therefore, the polymerase delta-PCNA-Fen1 complex has all the activities associated with prokaryotic DNA polymerases involved in replication: 5'-3' polymerase, 3'-5' exonuclease, and 5'-3' exonuclease. Although p21, a regulatory protein induced by p53 in response to DNA damage, interacts with PCNA with a comparable Kd (10 nM) and a stoichiometry of three molecules of p21 per PCNA trimer, a p21-PCNA-Fen1 complex is not formed. This mutually exclusive interaction suggests that the conformation of a PCNA trimer switches such that it can either bind p21 or Fen1. Furthermore, overexpression of p21 can disrupt Fen1-PCNA interaction in vivo. Therefore, besides interfering with the processivity of polymerase delta-PCNA, p21 also uncouples Fen1 from the PCNA scaffold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human cytomegalovirus (HCMV) genomic unique short (US) region encodes a family of homologous genes essential for the inhibition of major histocompatibility complex (MHC) class I-mediated antigen presentation during viral infection. Here we show that US3, the only immediate early (IE) gene within the US region, encodes an endoplasmic reticulum-resident glycoprotein that prevents intracellular transport of MHC class I molecules. In contrast to the rapid degradation of newly synthesized MHC class I heavy chains mediated by the early gene product US11, we found that US3 retains stable MHC class I heterodimers in the endoplasmic reticulum that are loaded with peptides while retained in the ER. Consistent with the expression pattern of US3 and US11, MHC class I molecules are retained but not degraded during the IE period of infection. Our data identify the first nonregulatory role of an IE protein of HCMV and suggest that HCMV uses different T-cell escape strategies at different times during the infectious cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heme oxygenase (HO) catalyzes the rate-limiting step in the degradation of heme to biliverdin, which is reduced by biliverdin reductase to bilirubin. Heme oxygenase-1 (HO-1) is inducible not only by its heme substrate, but also by a variety of agents causing oxidative stress. Although much is known about the regulation of HO-1 expression, the functional significance of HO-1 induction after oxidant insult is still poorly understood. We hypothesize and provide evidence that HO-1 induction serves to protect cells against oxidant stress. Human pulmonary epithelial cells (A549 cells) stably transfected with the rat HO-1 cDNA exhibit marked increases of HO-1 mRNA levels which were correlated with increased HO enzyme activity. Cells that overexpress HO-1 (A549-A4) exhibited a marked decrease in cell growth compared with wild-type A549 (A549-WT) cells or A549 cells transfected with control DNA (A549-neo). This slowing of cell growth was associated with an increased number of cells in G0/G1 phase during the exponential growth phase and decreased entry into the S phase, as determined by flow cytometric analysis of propidium iodide-stained cells and pulse experiments with bromodeoxyuridine. Furthermore, the A549-A4 cells accumulated at the G2/M phase and failed to progress through the cell cycle when stimulated with serum, whereas the A549-neo control cells exhibited normal cell cycle progression. Interestingly, the A549-A4 cells also exhibited marked resistance to hyperoxic oxidant insult. Tin protoporphyrin, a selective inhibitor of HO, reversed the growth arrest and ablated the increased survival against hyperoxia observed in the A549-A4 cells overexpressing HO-1. Taken together, our data suggest that overexpression of HO-1 results in cell growth arrest, which may facilitate cellular protection against non-heme-mediated oxidant insult such as hyperoxia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human CAS cDNA contains a 971-aa open reading frame that is homologous to the essential yeast gene CSE1. CSE1 is involved in chromosome segregation and is necessary for B-type cyclin degradation in mitosis. Using antibodies to CAS, it was shown that CAS levels are high in proliferating and low in nonproliferating cells. Here we describe the distribution of CAS in cells and tissues analyzed with antibodies against CAS. CAS is an approximately 100-kDa protein present in the cytoplasm of proliferating cells at levels between 2 x 10(5) and 1 x 10(6) molecules per cell. The intracellular distribution of CAS resembles that of tubulin. In interphase cells, anti-CAS antibody shows microtubule-like patterns and in mitotic cells it labels the mitotic spindle. CAS is removed from microtubules by mild detergent treatment (cytoskeleton preparations) and in vincristine- or taxol-treated cells. CAS is diffusely distributed in the cytoplasm with only traces present in tubulin paracrystals or bundles. Thus, CAS appears to be associated with but not to be an integral part of microtubules. Immunohistochemical staining of frozen tissues shows elevated amounts of CAS in proliferating cells such as testicular spermatogonia and cells in the basal layer cells of the colon. CAS was also concentrated in the respiratory epithelium of the trachea and in axons and Purkinje cells in the cerebellum. These cells contain many microtubules. The cellular location of CAS is consistent with an important role in cell division as well as in ciliary movement and vesicular transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quinolinate (Quin), a metabolite in the kynurenine pathway of tryptophan degradation and a neurotoxin that appears to act through the N-methyl-D-aspartate receptor system, was localized in cultured human peripheral blood monocytes/macrophages (PBMOs) by using a recently developed immunocytochemical method. Quin immunoreactivity (Quin-IR) was increased in gamma interferon (IFN-gamma)-stimulated monocytes/macrophages (MOs). In addition, the precursors, tryptophan and kynurenine, significantly increased Quin-IR. Infection of MOs by human T-cell lymphotropic virus type I (HTLV-I) in vitro substantially increased both the number of Quin-IR cells and the intensity of Quin-IR. At the peak of the Quin-IR response, about 40% of the cells were Quin-IR positive. In contrast, only about 2-5% of the cells were positive for HTLV-I, as detected by both immunofluorescence for the HTLV-I antigens and PCR techniques for the HTLV-I Tax gene. These results suggest that HTLV-I-induced Quin production in MOs occurs by an indirect mechanism, perhaps via cytokines produced by the infection but not directly by the virus infection per se. The significance of these findings to the neuropathology of HTLV-I infection is discussed.