954 resultados para Hot-spot -menetelmä
Resumo:
The Ninetyeast Ridge lavas have Sr and Nd isotopic ratios intermediate between those of Indian Ocean MORBs and those of the very enriched Kerguelen hot spot. In an Nd-Sr isotope diagram, they also plot close to the fields of St. Paul Island lavas and of the early magmatism on Kerguelen Archipelago. The Ninetyeast Ridge lavas were generated by mixing among at least three components: a depleted, MORB-type component, such as the one erupted today on the Southeast Indian Ridge; a very enriched, high- Sr/ Sr, low-epsilon-Nd, OIB-type component (the Kerguelen hot spot); and an OIB-type component comparable to that sampled from the St. Paul (and Amsterdam) lavas. The Ninetyeast Ridge lavas show a typical Dupal anomaly signature and Pb, Sr, and Nd isotopic systematics indicate that the Kerguelen hot spot was involved in the ridge's formation as the Indian plate moved northward. The different sites cored during ODP Leg 121 show a trend in their isotopic compositions, from less radiogenic Pb/ Pb ratios and intermediate 87Sr/86Sr and 143Nd/**Nd ratios in the oldest lavas (Site 758) toward more radiogenic 206Pb/204Pb, higher epsilon-Nd, and lower 87Sr/86Sr values in the youngest lavas (Site 756). The lavas from Site 757 have 206Pb/204Pb ratios intermediate between those of the lavas from Sites 756 and 758 and higher 87Sr/86Sr and lower epsilon-Nd values. The relative proportions of the hot spot(s) and MORB component have evolved with time, reflecting differences of tectonic setting: the relative proportion of the Kerguelen hot spot component appears lower in the younger Site 756 lavas than in the older lavas from Sites 757 and 758. Site 756 coincides with the beginning of rifting at the Southeast Indian Ridge, about 43 Ma ago. The formation of the early Kerguelen Archipelago lavas may have drained most of the plume-derived material toward the Antarctic plate. Alternatively, the proximity of the spreading-ridge axis may account for the isotopic similarity of the Site 756 lavas to young lavas erupted on the Southeast Indian Ridge, from 33? to 37?S. The older lavas of Ninetyeast Ridge may have formed when the hot spot and ridge axis did not exactly coincide. The involvement of the third component, a St. Paul hot spot, in the genesis of the Ninetyeast Ridge lavas, especially for the Site 756 lavas, is clearly indicated by Sr, Pb, and Nd isotope systematics and also by trace element ratios. These data, together with those from the Kerguelen Plateau, indicate that the Kerguelen hot spot has been active more or less continuously in the South Indian Ocean for at least 115 Ma. This could indicate that the plume, and by inference the Dupal anomaly, is deep seated in origin.
Resumo:
This paper presents results of studies of rocks sampled during Cruise 19 of R/V Akademik Mstislav Keldysh with the Mir submersibles in the Atlantic Ocean (slopes of the King's Trough and Palmer Ridge). Based on these materials and published data two stages of magmatism and evolution in the region are distinguished: 1) formation of a mid-ocean ridge in the rift zone (68-32 Ma); 2) development of intraplate volcanism during movement of the plate over a "hot spot" (32-0 Ma).
Resumo:
Coastal upwelling regions have been identified as sites of enhanced CH4 emissions to the atmosphere. The coastal upwelling area off Mauritania (NW Africa) is one of the most biologically productive regions of the world's ocean but its CH4 emissions have not been quantified so far. More than 1000 measurements of atmospheric and dissolved CH4 in the surface layer in the upwelling area off Mauritania were performed as part of the German SOPRAN (Surface Ocean Processes in the Anthropocene) study during two cruises in March/April 2005 (P320/1) and February 2007 (P348). During P348 enhanced CH4 saturations of up to 200% were found close to the coast and were associated with upwelling of South Atlantic Central Water. An area-weighted, seasonally adjusted estimate yielded overall annual CH4 emissions in the range from 1.6 to 2.9 Gg CH4. Thus the upwelling area off Mauritania represents a regional hot spot of CH4 emissions but seems to be of minor importance for the global oceanic CH4 emissions.
Resumo:
The nine holes (556-564) drilled during DSDP Leg 82 in a region west and southwest of the Azores Platform (Fig. 1) exhibit a wide variety of chemical compositions that indicate a complex petrogenetic history involving crystal fractionation, magma mixing, complex melting, and mantle heterogeneity. The major element chemistry of each hole except Hole 557 is typical of mid-ocean ridge basalts (MORBs), whereas the trace element and rare earth element (REE) abundances and ratios are more variable, and show that both depleted Type I and enriched Type II basalts have been erupted in the region. Hole 556 (30-34 Ma), located near a flow line through the Azores Triple Junction, contains typically depleted basalts, whereas Hole 557 (18 Ma), located near the same flow line but closer to the Azores Platform, is a highly enriched FeTi basalt, indicating that the Azores hot-spot anomaly has existed in its present configuration for at least 18 Ma, but less than 30-34 Ma. Hole 558 (34-37 Ma), located near a flow line through the FAMOUS and Leg 37 sites, includes both Type I and II basalts. Although the differences in Zr/Nb and light REE/heavy REE ratios imply different mantle sources, the (La/Ce)ch (>1) and Nd isotopic ratios are almost the same, suggesting that the complex melting and pervasive, small-scale mantle heterogeneity may account for the variations in trace element and REE ratios observed in Hole 558 (and FAMOUS sites). Farther south, Hole 559 (34-37 Ma), contains enriched Type II basalts, whereas Hole 561 (14-17 Ma), located further east near the same flow line, contains Type I and II basalts. In this case, the (La/Ce)ch and Nd isotopic ratios are different, indicating two distinct mantle sources. Again, the existence along the same flow line of two holes exhibiting such different chemistry suggests that mantle heterogeneity may exist on a more pervasive and transient smaller scale. (Hole 560 was not sampled for this study because the single basalt clast recovered was used for shipboard analysis.) All of the remaining three holes (562, 563, 564), located along a flow line about 100 km south of the Hayes Fracture Zone (33°N), contain only depleted Type I basalts. The contrast in chemical compositions suggests that the Hayes Fracture Zone may act as a "domain" boundary between an area of fairly homogeneous, depleted Type I basalts to the south (Holes 562-564) and a region of complex, highly variable basalts to the north near the Azores hot-spot anomaly (Holes 556-561).
Resumo:
Basalts from Maud Rise, Weddell Sea, are vesicular and olivine-phyric. Major, trace, and rare earth element concentrations are similar to those of alkali basalts from ocean islands and seamounts. The rocks are low in MgO, Cr, Ni, and Sc, and high in TiO2, K2O, P2O5, Zr, and LREE contents. The abundance of "primary" biotite and apatite in the matrix indicates the melting of a hydrous mantle. Prevalence of olivine and absence of plagioclase in the rocks suggests that the volatile in the melt was an H2O-CO2 mixture, where H2O was <0.5. Mantle derived xenocrysts in the basalt include corroded orthopyroxene, chromite, apatite, and olivine. Olivine (Fo90) is too magnesian to be in equilibrium with the basalts, as they contain only 5-6 wt% MgO. Based on the presence of mantle xenocrysts, the high concentration of incompatible elements, the spatial and chemical affinity with other ocean island basalts from the area, and the relative age of the basalt (overlain by late Campanian sediments), it is suggested that Maud Rise was probably generated by hot-spot activity, possible during a ridge crest jump prior to 84 Ma (anomaly 34 time). Iddingsite, a complex intergrowth of montmorillonite and goethite, is the major alteration product of second generation olivine. It is suggested that iddingsite crystallized at low temperatures (<200°C) from an oxidized fluid during deuteric alteration. Vesicles are commonly filled by zeolites which have been replaced by K-feldspars.
Resumo:
Cation exchange experiments (ammonium acetate and cation resin) on celadonite-smectite vein minerals from three DSDP holes demonstrate selective removal of common Sr relative to Rb and radiogenic Sr. This technique increases the Rb/Sr ratio by factors of 2.3 to 22 without significantly altering the age of the minerals, allowing easier and more precise dating of such vein minerals. The ages determined by this technique (Site 261 - 121.4+/-1.6 m.y.; Site 462A - 105.1+/-2.8 m.y.; Site 516F - 69.9+/-2.4 m.y.) are 34, 54 and 18 m.y. younger, respectively, than the age of crust formation at the site; in the case of site 462A, the young age is clearly related to off-ridge emplacement of a massive sill/flow complex. At the other sites, either the hydrothermal circulation systems persisted longer than for normal crust (10-15 m.y.), or were reactivated by off-ridge igneous activity. Celadonites show U and Pb contents and Pb isotopic compositions little changed from their basalt precursors, while Th contents are significantly lower. Celadonites thus have unusually high alkali/U,Th ratios and low Th/U ratios. If this celadonite alteration signature is significantly imprinted on oceanic crust as a whole, it will lead to very distinctive Pb isotope signatures for any hot spot magmas which contain a component of aged subducted recycled oceanic crust. Initial Sr isotope ratios of ocean crust vein minerals (smectite, celadonite, zeolite, calcite) are intermediate between primary basalt values and contemporary sea water values and indicate formation under seawaterdominated systems with effective water/rock ratios of 20-200.
Resumo:
Pebble-sized basaltic and glassy clasts were extracted from seamount-derived volcaniclastic debris flows and analyzed for various trace elements, including the rare earths, to determine their genetic relationships and provenance. All the clasts were originally derived from relatively shallow submarine lava flows prior to sedimentary reworking, and have undergone minor low-grade alteration. They are classified into three petrographic groups (A, B, and C) characterized by different phenocryst assemblages and variable abundances and ratios of incompatible elements. Group A (clast from Hole 585) is a hyaloclastite fragment which is olivine-normative and distinct from the other clasts, with incompatibleelement ratios characteristic of transitional or alkali basalts. Groups B and C (clasts from Hole 585A) are quartz-normative, variably plagioclase-clinopyroxene-olivine phyric tholeiites, all with essentially similar ratios of highly incompatible elements and patterns of enrichment in light rare earth elements (chrondrite-normalized). Variation within Groups B and C was governed by low-pressure fractionation of the observed phenocryst phases, whereas the most primitive compositions of each group may be related by variable partial melting of a common source. The clasts have intraplate chemical characteristics, although relative to oceanic hot-spot-related volcanics (e.g., Hawaiian tholeiites) they are marginally depleted in most incompatible elements. The source region was enriched in all incompatible elements, compared with a depleted mid-ocean-ridge basalt source.
Resumo:
The aim of DSDP Leg 82 was to decipher the temporal and spatial evolution of Azores Plume. The Pb-isotopic results of this leg are rather complex, and can be summarized as follows: 1. At a given site (561, 558), variations of Pb isotopic compositions are generally accompanied by major changes in trace-element ratios, indicating significant heterogeneity of the source region. There is a correlation between Pb isotopes and trace elements. 2. In contrast, if all the data (i.e., all studied sites) of Leg 82 are considered together, no correlation can be discerned between Pb isotopes and trace elements. Site 556, especially, shows abnormal behavior. 3. Leg 82 samples not only cover the entire range of Pb isotopic composition previously established for the Atlantic Ocean, but extend this field to more radiogenic values. 4. The data are compatible with the hot-spot model proposed by Schilling (1975), if one considers that the Azores Plume itself is isotopically heterogeneous, and that it has been progressively contaminated to various degrees by upper mantle material.
Resumo:
Deep Sea Drilling Project Leg 74 drilled basement on the Walvis Ridge at Sites 525, 527, and 528. These sites are located on the crest and flanks of the segment of the Ridge about 68 to 70 m.y. old in the central province of the Ridge. Each site has a number of distinct subaqueous flows separated by sediment layers. Although variation in geochemistry among units and sites is related in part to alteration or crystal fractionation, some is caused by small-scale compositional variation in the mantle source of the basalts. Leg 74 basalts are similar to other basalts recovered from the Walvis Ridge and the Rio Grande Rise. They show distinct compositional differences to mid-ocean ridge basalts in general, to those recovered from the South Atlantic at this latitude, and to basalts presently erupting in Tristan da Cunha. The composition of the Walvis Ridge basalts does not suggest simple mixtures of present-day MORB and Tristan da Cunha melts. If the Walvis Ridge represents the trace of the Tristan da Cunha hot spot as the plates separated, then the composition of the mantle source has differed at different times in the past, which suggests mantle heterogeneity.
Resumo:
Large organic food falls to the deep sea - such as whale carcasses and wood logs - support the development of reduced, sulfidic niches in an otherwise oxygenated, oligotrophic deep-sea environment. These transient hot spot ecosystems may serve the dispersal of highly adapted chemosynthetic organisms such as thiotrophic bivalves and siboglinid worms. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches. Wood colonization experiments were carried out for the duration of one year in the vicinity of a cold seep area in the Nile deep-sea fan (Eastern Mediterranean) at depths of 1690 m. Wood logs were deployed in 2006 during the BIONIL cruise (RV Meteor M70/2 with ROV Quest, Marum, Germany) and sampled in 2007 during the Medeco-2 cruise (RV Pourquoi Pas? with ROV Victor 6000, Ifremer, France). Wood-boring bivalves played a key role in the initial degradation of the wood, the dispersal of wood chips and fecal matter around the wood log, and the provision of colonization surfaces to other organisms. Total oxygen uptake measured with a ROV-operated benthic chamber module was higher at the wood (0.5 m away) in contrast to 10 m away at a reference site (25 mmol m-2 d-1 and 1 mmol m-2 d-1, respectively), indicating an increased activity of sedimentary communities around the wood falls. Bacterial cell numbers associated with wood increased substantially from freshly submerged wood to the wood chip/fecal matter layer next to the wood experiments, as determined with Acridine Orange Direct Counts (AODC) and DAPI-stained counts. Microsensor measurements of sulfide, oxygen and pH were conducted ex situ. Sulfide fluxes were higher at the wood experiments when compared to reference measurements (19 and 32 mmol m-2 d-1 vs. 0 and 16 mmol -2 d-1, respectively). Sulfate reduction (SR) rates at the wood experiments were determined in ex situ incubations (1.3 and 2.0 mmol m-2 d-1) and fell into the lower range of SR rates previously observed from other chemosynthetic habitats at cold seeps. There was no influence of wood deposition on phosphate, silicate and nitrate concentrations, but ammonium concentrations were elevated at the wood chip-sediment boundary layer. Concentrations of dissolved organic carbon were much higher at the wood experiments (wood chip-sediment boundary layer) in comparison to measurements at the reference sites, which may indicate that cellulose degradation was highest under anoxic conditions and hence enabled by anaerobic benthic bacteria, e.g. fermenters and sulfate reducers. Our observations demonstrate that, after one year, the presence of wood at the seafloor had led to the creation of sulfidic niches, comparable to what has been observed at whale falls, albeit at lower rates.
Resumo:
Investigations of petrography, mineralogy, and chemical composition of gases and fluids in tuffs and lavas were carried out on samples dredged in the transition zone from the shelf and slope of Iceland to the Reykjanes Ridge. The samples were collected from the depths of 950-720 m during different expeditions of R/V Akademik Kurchatov and Mikhail Lomonosov. Mantle ultrabasite inclusions were first recognized in the region of Iceland. It can be assumed that they are related to eruptive structures formed on the ocean floor during Pliocene and are associated with the Iceland hot spot.
Resumo:
Qualitative petrographic study of selected clastic horizons within the Eocene section of Hole 516F has revealed the presence of abundant fine-grained lithic fragments, probably volcanic, along with coarser fragments of quartz and feldspar apparently derived from a nearby plutonic terrain. In detail, poor sorting, presence of graded bedding, and an abundance of clay suggest these are turbidite horizons locally derived from a mixed volcanic/plutonic terrain, possibly with some direct contribution from contemporary volcanic ash falls. A progressive increase in plutonic versus volcanic components with time is, however, more consistent with an erosional origin for most of this material. Unusual euhedral dark biotite is abundant in several of the lower clastic horizons; it is most easily interpreted as microphenocrysts weathered in situ out of alkalic volcanic ash. Biotite separated from Sample 516F-76-4,107-115 cm, has been dated by the K-Ar method at about 46 Ma. Alkaline volcanoes active on the Rio Grande Rise in the middle Eocene would be the most probable source of this ash and would be consistent with other evidence for potassic, alkaline volcanism along the Rio Grande Rise and at the Tristan da Cunha hot spot.
Resumo:
Basalts from Hole 516F, DSDP Leg 72 on the Rio Grande Rise are tholeiitic in character but differ from normal mid-ocean ridge basalts in the South Atlantic in higher concentrations of incompatible elements such as Ti, K, V, Sr, Ba, Zr, Nb, and light rare-earth elements and in lower concentrations of Mg, Cr, and Ni. They contrast with previously reported basalts from the Rio Grande Rise, which were highly alkalic in character. The Rio Grande Rise basalts from Hole 516F (age 84.5 Ma) are generally similar to basalts from the eastern end of the Walvis Ridge (80-100 Ma). It is suggested that they either originated, like the Walvis Ridge, from a mantle hot spot that is different from the present-day hot spot (Tristan da Cunha) and that has changed composition with time, or from a spreading center that was shallow and chemically influenced by the adjacent hot spot, similar to the present-day Mid-Atlantic Ridge near the Azores and Tristan da Cunha.
Resumo:
During Deep Sea Drilling Project Leg 73 (South Atlantic), basaltic pillow lava, flows, and sills were encountered in Holes 519A, 520, 522B, and 524. Paleomagnetic data indicate that the basalts from Holes 519A (magnetic Anomaly 51) and 522B (Anomaly 16) have ages of about 12 m.y. and about 38 m.y., respectively. The major- and trace- (including rare-earth-) element characteristics of the Hole 519A basalts (a total of 27 m) demonstrate that these basalts are typical normal-type mid-ocean-ridge basalts (N-type MORB). In composition the basalts overlap olivine tholeiites from other normal Mid-Atlantic Ridge segments. Both the spectra of incompatible, or less-hygromagmatophile elements (such as Ti, V, Y, and Zr) and REE abundances indicate that these basalts are the result of a low-pressure fractionation of olivine, spinel, and Plagioclase prior to eruption. In Hole 520 only 1.7 m of basalt were recovered from a total drilling depth of 10.5 m. These pillow basalts crystallized from fairly evolved (N-type MORB) tholeiitic melts. In total, 19 m of basaltic pillow lavas and flows were penetrated in Hole 522B. Thirteen cooling units were distinguished on the basis of glassy margins and fine quench textures. In contrast to Holes 519A and 520, the basalts of the Hole 522B ridge section can be divided into two major groups of tholeiites: (1) Cooling Units 1 through 12 and (2) Cooling Unit 13. The basalts in this ridge section are also N-type MORBs but are generally more differentiated than those of Holes 519A and 520. The lowermost basalts (Cooling Unit 13) have the most primitive composition and make up a compositional group distinct from the more evolved basalts in the twelve units above it. Hole 524 was drilled on the south flank of the Walvis Ridge and thus provided samples from a more complex part of the South Atlantic seafloor. Three different basaltic rock suites, interlayered with volcanic detrital sediments, were encountered. The rock suites are, from top to bottom, an alkali basaltic pillow lava; a 16-m-thick alkaline diabase sill with an age of about 65 m.y. (according to K-Ar dating and planktonic foraminifers); and a second sill that is approximately 9 m thick, about 74 m.y. in age, and tholeiitic in composition, thus contrasting strongly with the overlying alkaline rocks. The alkali basalts of Hole 524 show chemical characteristics that are very similar to the basaltic lavas of the Tristan da Cunha group volcanoes, which are located approximately 400 km east of the Mid-Atlantic Ridge crest. Thus, the Walvis Ridge may plausibly be interpreted as a line of hot-spot alkaline volcanoes.