918 resultados para Hollow core-photonic bandgap fibers
Resumo:
The lasing in an end-pumped gain guided index-antiguided (GG-IAG) Yb3+-doped silicate glass fiber with a 200 mu m diameter core is demonstrated. Laser beams with similar beam propagation factors M (2) and mode field diameters W (0) (> 160 mu m) were observed at the output end of the GG-IAG fibers under different pump powers, which indicated that single mode behavior and excellent beam quality were achieved during propagation. Furthermore, the laser amplifier characteristics in the present Yb3+-doped GG-IAG fiber were also evaluated.
Resumo:
Tb/Yb共掺的石英光纤的上转换绿光发光研究,研究了最佳浓度配比和发光机理。
Resumo:
Using a dry/wet spinning process, asymmetric cellulose hollow fiber membranes (CHFM) were prepared from a dope composed of cellulose/N-methylmorpholine-N-oxide/water. The formation mechanism for the finger-like macrovoids at the inner portion of as-spun fibers was explained. Naturally drying and three solvent exchange drying methods were tried to investigate their influence on morphology and properties of CHFM. It was found that the ethanol-hexane exchange drying was an appropriate method to minimize morphology change of the as-spun CHFM, whereas the naturally drying caused the greatest shrinkage of the fibers that made the porous membrane become dense. The result, CHFM from ethanol-hexane exchange drying performed the highest gas permeation rate but gas permeation of the naturally dried membrane could not be detectable. The resultant CHFM from the ethanol-hexane exchange drying also showed acceptable, mechanical properties, thus it was proposed to be an appropriate method for gas separation purpose. The experimental results supported the proposed drying mechanism of CHFM. The free water would evaporate or be replaced by a solvent that subsequently would evaporate but the bonded water would remain in the membrane. What dominated the changes of membrane morphology during drying should be. the molecular affinities of cellulose-water, water-solvent and solvent-solvent. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The mono- and bimetallic catalytic polymeric hollow-fiber reactors were established with catalytic polymeric cellulose acetate (CA) hollow fibers prepared by supporting the polymer-anchored mono- or bimetallic catalyst in/on the inner wall of the hollow fibers. The selective hydrogenation of cyclopentadiene to cyclopentene was efficiently carried out in the above catalytic polymeric hollow-fiber reactors, especially in the NaBH4 reduced bimetallic PVP-Pd-0.5Co/CA hollow-fiber reactor under mild conditions of 40 degrees C and 0.1 MPa. It was found that there was a remarkable synergic effect of palladium and cobalt reduced by NaBH4 in the bimetallic PVP-Pd-0.5Co/CA hollow-fiber reactor, which results in a 97.5% conversion of cyclopentadiene and a 98.4% selectivity for cyclopentene. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The release behavior of a water-soluble small molecule drug from the drug-loaded nanofibers prepared by emulsion-electrospinning was investigated. Doxorubicin hydrochloride (Dox), a water-soluble anticancer agent, was used as the model drug. The laser scanning confocal microscopic images indicated that the drug was well incorporated into amphiphilic poly(ethylene glycol)-poly(L-lactic acid) (PEG-PLA) diblock copolymer nanofibers, forming "core-sheath" structured drug-loaded nanofibers.
Resumo:
In this paper, a facile sol-gel process for producing monodisperse, spherical, and nonaggregated pigment particles with a core/shell structure is reported. Spherical silica particles (245 and 385 nm in diameter) and Cr2O3, alpha-Fe2O3, ZnCo2O4, CuFeCrO4, MgFe2O4, and CoAl2O4 pigments are selected as cores and shells, respectively. The obtained core/shell-structured pigment samples, denoted as SiO2@Cr2O3 (green), SiO2@alpha-Fe2O3 (red), SiO2@MgFe2O4 (brown), SiO2@ZnCo2O4 (dark green), SiO2@CoAl2O4 (blue), and SiO2@CuFeCrO4 (black), are well characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and UV-vis diffuse reflection, as well as by investigating the magnetic properties. The results of XRD and high-resolution TEM (HRTEM) demonstrate that the pigment shells crystallize well on the surface Of SiO2 Particles. The thickness of the pigment shell can be tuned by the number of coatings, to some extent. These pigment particles can be well dispersed in some solvents (such as glycol) to form relatively more stable suspensions than the commercial products.
Resumo:
In difference to compact objects of a similar size, toroidal structures have some distinguishing properties that originate from their open inner cavity and closed circuit. Here, a general facile methodology is developed to prepare composite rings with varied compositions on a large scale by using core-shell toroids assembled from tri-block copolymers of poly(4-vinyl pyridine) (PVP)/polystyrene (PS)/PVP. Taking advantage of the complexation ability of the PVP shell, varied components that range from polymers, inorganic materials, metals and their compounds, as well as pre-formed nanoparticles are introduced to the toroidal structures to form composite nanostructures. Metal ions can be adsorbed by PVP through complexation. After in situ reduction, a large number of metal-based functional materials can be prepared. PVP is alkaline, and thus capable of catalyzing the sol-gel process to generate an inorganic shell. Furthermore, pre-formed nanoparticles can also be absorbed by the shell through specific interactions. The PS core is not infiltrative during synthesis, and hollow rings can be derived after the polymer templates are removed.
Resumo:
In this work, a gradient polystyrene colloidal photonic crystal was fabricated by annealing in a graded temperature field. The lattice constant of the gradient crystal gradually varied along the temperature-gradient direction. The positional bandgap wavelength as well as the attenuation of the bandgap wavelength could be tuned dependent on the position of the gradient colloidal crystal along the gradient direction because of the lattice-constant variation.
Resumo:
Uniform core-sheath nanofibers are prepared by electrospinning a water-in-oil emulsion in which the aqueous phase consists of a poly(ethylene oxide) (PEO) solution in water and the oily phase is a chloroform solution of an amphiphilic poly(ethylene glycol)-poly(L-lactic acid) (PEGPLA) diblock copolymer. The obtained fibers are composed of a PEO core and a PEG-PLA sheath with a sharp boundary in between. By adjusting the emulsion composition and the emulsification parameters, the overall fiber size and the relative diameters of the core and the sheath can be changed. A mechanism is proposed to explain the process of transformation from the emulsion to the core-sheath fibers, i.e., the stretching and evaporation induced de-emulsification. In principle, this process can be applied to other systems to prepare core-sheath fibers in place of concentric electrospinning and it is especially suitable for fabricating composite nanofibers that contain water-soluble drugs.
Resumo:
A straightforward combination of the seeding growth method and replacement reaction allowed for the formation of a nanorattle composed of a gold core and Pt/Ag shell. The size, structure, and composition of the Pt/Ag rattle-type nanostructure were confirmed by scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectrometry.
Resumo:
A sol-gel technique was used to prepare Gd2Ti2O7:Eu3+-coated submicron silica spheres (SiO2@Gd2Ti2O7:Eu3+). The resulted SiO2@Gd2Ti2O7:Eu3+ core-shell particles were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive x-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, as well as kinetic decays. The XRD results demonstrate that the Gd2Ti2O7:Eu3+ layers begin to crystallize on the SiO2 spheres after annealing at 800 degrees C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size similar to 620 nm), non-agglomeration, and smooth surface. The thickness of the Gd2Ti2O7:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (60 nm for four deposition cycles). Under the irradiation of 310 nm ultraviolet, the SiO2@GdTi2O7:Eu3+ samples show strong emission of Eu3+.
Resumo:
A uniform nanolayer of europium-doped Gd2O3 was coated on the surface of preformed submicron silica spheres by a Pechini sol-gel process. The resulted SiO2@Gd2O3:Eu3+ core-shell structured phosphors were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays. The XRD results show that the Gd2O3:Eu3+ layers start to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. The core-shell phosphors possess perfect spherical shape with narrow size distribution (average size: 640 nm) and non-agglomeration. The thickness of the Gd2O3:Eu3+ shells on the SiO2 cores can be adjusted by changing the deposition cycles (70 nm for three deposition cycles). Under short UV excitation, the obtained SiO2@Gd2O3:Eu3+ particles show a strong red emission with D-5(0)-F-7(2) (610 nm) of Eu3+ as the most prominent group.The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.
Resumo:
A novel lower critical solution temperature (LCST) membrane forming system containing cellulose acetate (CA)/poly (vinyl pyrrolidone) (PVP 3 60K)/N-methyl-2-pyrrolidone (NMP)/1,2-propanediol with a weight ratio of 24.0:5.0:62.6:8.4 had been developed. CA hollow fiber ultrafiltration (UF) membranes were fabricated using the dry-wet spinning technique. The fibers were post-treated with a 200 mg/L hypochlorite solution over a period of 6 It at pH 7. The experimental results showed that water flux of a membrane decreased while retention increased with increasing CA concentration in a dope. It was concluded that the membrane pore size decreased with increasing CA concentration. The membrane fouling tendency for BSA was 3 times higher than that for PVP 24K. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The radiation loss in the escaping light cone with a two-dimensional (2D) photonic crystal slab microcavity can be suppressed by means of cladding the low-Q slab microcavity by three-dimensional woodpile photonic crystals with the complete bandgap when the resonance frequency is located inside the complete bandgap. It is confirmed that the hybrid microcavity based on a low-Q, single-defect photonic crystal slab microcavity shows improvement of the Q factor without affecting the mode volume and modal frequency. Whereas 2D slab microcavities exhibit Q saturation with an increase in the number of layers, for the analyzed hybrid microcavities with a small gap between the slab and woodpiles, the Q factor does not saturate.
Resumo:
An abstract of this work will be presented at the Compiler, Architecture and Tools Conference (CATC), Intel Development Center, Haifa, Israel November 23, 2015.