184 resultados para Histomorphometry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nearly half of the US population faces the risk of developing knee osteoarthritis (OA). Both in vitro and in vivo studies can aid in a better understanding of the etiology, progression, and advancement of this debilitating disorder. The knee menisci are fibrocartilagenous structures that aid in the distribution of load, attenuation of shock, alignment and lubrication of the knee. Little is known about the biochemical and morphological changes associated with knee menisci following altered loading and traumatic impaction, and investigations are needed to further elucidate how degradation of this soft tissue advances over time. The biochemical response of porcine meniscal explants was investigated following a single bout of dynamic compression with and without the treatment of the pharmaceutical drug, anakinra (IL-1RA). Dynamic loading led to a strain-dependent response in both anabolic and catabolic gene expression of meniscal explants. By inhibiting the Interleukin-1 pathway with IL-1RA, a marked decrease in several catabolic molecules was found. From these studies, future developments in OA treatments may be developed. The implementation of an in vivo animal model contributes to the understanding of how the knee joint behaves as a whole. A novel closed-joint in vivo model that induces anterior cruciate ligament (ACL) rupture has been developed to better understand how traumatic injury leads to OA. The menisci of knees from three different groups (healthy, ACL transected, and traumatically impacted) were characterized using histomorphometry. The acute and chronic changes within the knee following traumatic impaction were investigated. The works presented in this dissertation have focused on the characterization, implementation, and development of mechanically-induced changes to the knee menisci.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Although considerable bone fill may occur following treatment of peri-implantitis, re-osseointegration appears to be limited and unpredictable. Objectives: To evaluate the effects of various decontamination techniques and implant surface configurations on re-osseointegration of contaminated dental implants. MATERIAL AND METHODS: Three months after tooth extraction, implants consisting of a basal part and an exchangeable intraosseous implant cylinder (EIIC) were placed in the mandibles of dogs. The EIIC was machined (M), sandblasted and acid-etched (SLA), or titanium plasma sprayed (TPS). Ligature-induced peri-implantitis was initiated 8 weeks post-implantation and lasted until bone loss reached the junction of the two implant parts. Three treatment modalities were applied: (T1) the EIIC was exchanged for a pristine EIIC; (T2) the EIIC was sprayed in situ with saline; and (T3) the EIIC was removed, cleansed outside the mouth by spraying with saline, steam-sterilized, and remounted. A collagen barrier was placed over each fixture, and 3 months later, samples were processed for histology and histomorphometry. RESULTS: T2 revealed the highest bone-to-implant contact (BIC) level (significantly better than T1 and T3). T2 also yielded the highest bone crest level (significantly better than T1), followed by T3 (significantly better than T1). SLA showed the highest BIC level (significantly better than M), followed by TPS. There were no statistically significant differences in bone crest height between implant types. CONCLUSIONS: Both SLA implants and in situ cleansing resulted in the best re-osseointegration and bone fill of previously contaminated implants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Using a rat model, we evaluated the kinetics and histomorphometry of ectopic bone formation in association with biomimetic implant coatings containing BMP-2. MATERIALS AND METHODS: One experimental and three control groups were set up: titanium-alloy discs coated with a biomimetically co-precipitated layer of calcium phosphate and BMP-2 [1.7 microg per disc (incorporated-BMP group)]; uncoated discs (control); discs biomimetically coated with a layer of calcium phosphate alone (control); and discs biomimetically coated with a layer of calcium phosphate bearing superficially adsorbed BMP-2 [0.98 microg per disc (control)]. Discs (n = 6 per group) were implanted subcutaneously in rats and retrieved at 7-day intervals over a period of 5 weeks for kinetic, histomorphometrical, morphological and histochemical analyses. RESULTS: In the incorporated-BMP-2 group, osteogenic activity was first observed 2 weeks after implantation and thereafter continued unabated until the end of the monitoring period. The net weekly rates of bone formation per disc were 5.8 mm3 at 2 weeks and 3.64 mm3 at 5 weeks. The total volumes of bone formed per disc at these junctures were 5.8 mm3 and 10.3 mm3, respectively. Bone tissue, which was formed by a direct ossification mechanism, was deposited at distances of up to 340 microm from the implant surfaces. The biomimetic coatings were degraded gradually, initially by foreign body giant cells alone and then also by osteoclasts. Forty percent of the coating material (and thus presumably of the incorporated BMP-2) remained at the end of the monitoring period. Hence, 60% of the incorporated BMP-2 had been released. At this 5-week juncture, no bone tissue was associated with any of the control implants. CONCLUSION: BMP-2 incorporated into biomimetic calcium phosphate coatings is capable not only of inducing bone formation at an ectopic site in vivo but also of doing so with a very high potency at a low pharmacological level, and of sustaining this activity for a considerable period of time. The sustainment of osteogenic activity is of great clinical importance for the osseointegration of dental and orthopedic implants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperhomocysteinemia (HHCY) has been linked to fragility fractures and osteoporosis. Folate and vitamin B(12) deficiencies are among the main causes of HHCY. However, the impact of these vitamins on bone health has been poorly studied. This study analyzed the effect of folate and vitamin B(12) deficiency on bone in rats. We used two groups of rats: a control group (Co, n = 10) and a vitamin-deficient group (VitDef, n = 10). VitDef animals were fed for 12 wk with a folate- and vitamin B(12)-free diet. Co animals received an equicaloric control diet. Tissue and plasma concentrations of homocysteine (HCY), S-adenosyl-homocysteine (SAH), and S-adenosyl-methionine (SAM) were measured. Bone quality was assessed by biomechanical testing (maximum force of an axial compression test; F(max)), histomorphometry (bone area/total area; B.Ar./T.Ar.], and the measurement of biochemical bone turnover markers (osteocalcin, collagen I C-terminal cross-laps [CTX]). VitDef animals developed significant HHCY (Co versus VitDef: 6.8 +/- 2.7 versus 61.1 +/- 12.8 microM, p < 0.001) that was accompanied by a high plasma concentration of SAH (Co versus VitDef: 24.1 +/- 5.9 versus 86.4 +/- 44.3 nM, p < 0.001). However, bone tissue concentrations of HCY, SAH, and SAM were similar in the two groups. Fmax, B.Ar./T.Ar., OC, and CTX did not differ between VitDef and Co animals, indicating that bone quality was not affected. Folate and vitamin B(12) deficiency induces distinct HHCY but has no effect on bone health in otherwise healthy adult rats. The unchanged HCY metabolism in bone is the most probable explanation for the missing effect of the vitamin-free diet on bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study Design. An experimental animal study. Objective. To investigate histomorphometric and radiographical changes in the BB.4S rat model after PEEK (polyetheretherketone) nonfusion interspinous device implantation. Summary of Background Data. Clinical effectiveness of the PEEK nonfusion spine implant Wallis (Abbott, Bordeaux, France; now Zimmer, Warsaw, IN) is well documented. However, there is a lack of evidence on the long-term effects of this implant on bone, in particular its influence on structural changes of bone elements of the lumbar spine. Methods. Twenty-four male BB.4S rats aged 11 weeks underwent surgery for implantation of a PEEK nonfusion interspinous device or for a sham procedure in 3 groups of 8 animals each: 1) implantation at level L4–L5; 2) implantation at level L5–L6; and 3) sham surgery. Eleven weeks postoperatively osteolyses at the implant-bone interface were measured via radiograph, bone mineral density of vertebral bodies was analyzed using osteodensitometry, and bone mineral content as well as resorption of the spinous processes were examined by histomorphometry. Results. Resorption of the spinous processes at the site of the interspinous implant was found in all treated segments. There was no significant difference in either bone density of vertebral bodies or histomorphometric structure of the spinous processes between adjacent vertebral bodies, between treated and untreated segments and between groups. Conclusion. These findings indicate that resorption of spinous processes because of a result of implant loosening, inhibit the targeted load redistribution through the PEEK nonfusion interspinous device in the lumbar spinal segment of the rat. This leads to reduced long-term stability of the implant in the animal model. These results suggest that PEEK nonfusion interspinous devices like the Wallis implants may have time-limited effects and should only be used for specified indications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Zirconia (ZrO2 ) has received interest as a dental material; however, little information is available on the impact of surface modifications on the osseointegration of zirconia implants. PURPOSE: The aim of the present study was to determine the effect of acid or alkaline etching of sandblasted ZrO2 implants on bone apposition in vivo. METHODS: Cylindrical ZrO2 implants with two circumferential grooves were placed in the maxilla of 12 miniature pigs. Biopsies were harvested after 1, 2, 4, and 8 weeks of healing. Undecalcified toluidine blue-stained ground sections were produced. The bone-to-implant contact, the bone area, and the presence of multinucleated giant cells were determined by histomorphometry. An uncorrected explorative statistical analysis was performed. RESULTS: Acid etching but not alkaline etching of sandblasted ZrO2 implants caused more bone-to-implant contact than sandblasted ZrO2 implants. The bone area was unaffected by the surface modifications. Acid and alkaline etching both increased the formation of multinucleated giant cells at the implant surface. CONCLUSIONS: This study provides a scientific basis to further investigate the impact of acid etching of sandblasted ZrO2 implants on osseointegration and the role of multinucleated giant cells in this process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pneumococcal meningitis (PM) results in high mortality rates and long-lasting neurological deficits. Hippocampal apoptosis and cortical necrosis are histopathological correlates of neurofunctional sequelae in rodent models and are frequently observed in autopsy studies of patients who die of PM. In experimental PM, inhibition of matrix metalloproteinases (MMPs) and/or tumor necrosis factor (TNF)-converting enzyme (TACE) has been shown to reduce brain injury and the associated impairment of neurocognitive function. However, none of the compounds evaluated in these studies entered clinical development. Here, we evaluated two second-generation MMP and TACE inhibitors with higher selectivity and improved oral availability. Ro 32-3555 (Trocade, cipemastat) preferentially inhibits collagenases (MMP-1, -8, and -13) and gelatinase B (MMP-9), while Ro 32-7315 is an efficient inhibitor of TACE. PM was induced in infant rats by the intracisternal injection of live Streptococcus pneumoniae. Ro 32-3555 and Ro 32-7315 were injected intraperitoneally, starting at 3 h postinfection. Antibiotic (ceftriaxone) therapy was initiated at 18 h postinfection, and clinical parameters (weight, clinical score, mortality rate) were recorded. Myeloperoxidase activities, concentrations of cytokines and chemokines, concentrations of MMP-2 and MMP-9, and collagen concentrations were measured in the cerebrospinal fluid. Animals were sacrificed at 42 h postinfection, and their brains were assessed by histomorphometry for hippocampal apoptosis and cortical necrosis. Both compounds, while exhibiting disparate MMP and TACE inhibitory profiles, decreased hippocampal apoptosis and cortical injury. Ro 32-3555 reduced mortality rates and cerebrospinal fluid TNF, interleukin-1β (IL-1β) and collagen levels, while Ro 32-7315 reduced weight loss and cerebrospinal fluid TNF and IL-6 levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sclerostin is a Wnt signalling antagonist that controls bone metabolism. Sclerostin is expressed by osteocytes and cementocytes; however, its role in the formation of dental structures remains unclear. Here, we analysed the mandibles of sclerostin knockout mice to determine the influence of sclerostin on dental structures and dimensions using histomorphometry and micro-computed tomography (μCT) imaging. μCT and histomorphometric analyses were performed on the first lower molar and its surrounding structures in mice lacking a functional sclerostin gene and in wild-type controls. μCT on six animals in each group revealed that the dimension of the basal bone as well as the coronal and apical part of alveolar part increased in the sclerostin knockout mice. No significant differences were observed for the tooth and pulp chamber volume. Descriptive histomorphometric analyses of four wild-type and three sclerostin knockout mice demonstrated an increased width of the cementum and a concomitant moderate decrease in the periodontal space width. Taken together, these results suggest that the lack of sclerostin mainly alters the bone and cementum phenotypes rather than producing abnormalities in tooth structures such as dentin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Despite the worldwide increased prevalence of osteoporosis, no data are available evaluating the effect of an enamel matrix derivative (EMD) on the healing of periodontal defects in patients with osteoporosis. This study aims to evaluate whether the regenerative potential of EMD may be suitable for osteoporosis-related periodontal defects. METHODS Forty female Wistar rats (mean body weight: 200 g) were used for this study. An osteoporosis animal model was carried out by bilateral ovariectomy (OVX) in 20 animals. Ten weeks after OVX, bilateral fenestration defects were created at the buccal aspect of the first mandibular molar. Animals were randomly assigned to four groups of 10 animals per group: 1) control animals with unfilled periodontal defects; 2) control animals with EMD-treated defects; 3) OVX animals with unfilled defects; and 4) OVX animals with EMD-treated defects. The animals were euthanized 28 days later, and the percentage of defect fill and thickness of newly formed bone and cementum were assessed by histomorphometry and microcomputed tomography (micro-CT) analysis. The number of osteoclasts was determined by tartrate-resistant acid phosphatase (TRAP), and angiogenesis was assessed by analyzing formation of blood vessels. RESULTS OVX animals demonstrated significantly reduced bone volume in unfilled defects compared with control defects (18.9% for OVX animals versus 27.2% for control animals) as assessed by micro-CT. The addition of EMD in both OVX and control animals resulted in significantly higher bone density (52.4% and 69.2%, respectively) and bone width (134 versus 165μm) compared with untreated defects; however, the healing in OVX animals treated with EMD was significantly lower than that in control animals treated with EMD. Animals treated with EMD also demonstrated significantly higher cementum formation in both control and OVX animals. The number of TRAP-positive osteoclasts did not vary between untreated and EMD-treated animals; however, a significant increase was observed in all OVX animals. The number of blood vessels and percentage of new vessel formation was significantly higher in EMD-treated samples. CONCLUSIONS The results from the present study suggest that: 1) an osteoporotic phenotype may decrease periodontal regeneration; and 2) EMD may support greater periodontal regeneration in patients suffering from the disease. Additional clinical studies are necessary to fully elucidate the possible beneficial effect of EMD for periodontal regeneration in patients suffering from osteoporosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM Vitamin D deficiency is considered to diminish bone regeneration. Yet, raising the serum levels takes months. A topic application of the active vitamin D metabolite, calcitriol, may be an effective approach. Thus, it becomes important to know the effect of vitamin D deficiency and local application on alveolar bone regeneration. MATERIAL AND METHODS Sixty rats were divided into three groups; two vitamin depletion groups and a control group. Identical single defects (2 mm diameter) were created in the maxilla and mandible treated with calcitriol soaked collagen in one deficiency group while in the other two groups not. Histomorphometric analysis and micro CTs were performed after 1 and 3 weeks. Serum levels of 25(OH)D3 and PTH were determined. RESULTS Bone formation rate significantly increased within the observation period in all groups. Bone regeneration was higher in the maxilla than in the mandible. However, bone regeneration was lower in the control group compared to vitamin depletion groups, with no significant effects by local administration of calcitriol (micro CT mandible p = 0.003, maxilla p < 0.001; histomorphometry maxilla p = 0.035, mandible p = 0.18). CONCLUSION Vitamin D deficiency not necessarily impairs bone regeneration in the rat jaw and a single local calcitriol application does not enhance healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Although osteopenia is frequent in spondyloarthritis (SpA), the underlying cellular mechanisms and association with other symptoms are poorly understood. This study aimed to characterize bone loss during disease progression, determine cellular alterations, and assess the contribution of inflammatory bowel disease (IBD) to bone loss in HLA-B27 transgenic rats. Methods Bones of 2-, 6-, and 12-month-old non-transgenic, disease-free HLA-B7 and disease-associated HLA-B27 transgenic rats were examined using peripheral quantitative computed tomography, μCT, and nanoindentation. Cellular characteristics were determined by histomorphometry and ex vivo cultures. The impact of IBD was determined using [21-3 x 283-2]F1 rats, which develop arthritis and spondylitis, but not IBD. Results HLA-B27 transgenic rats continuously lost bone mass with increasing age and had impaired bone material properties, leading to a 3-fold decrease in bone strength at 12 months of age. Bone turnover was increased in HLA-B27 transgenic rats, as evidenced by a 3-fold increase in bone formation and a 6-fold increase in bone resorption parameters. Enhanced osteoclastic markers were associated with a larger number of precursors in the bone marrow and a stronger osteoclastogenic response to RANKL or TNFα. Further, IBD-free [21-3 x 283-2]F1 rats also displayed decreased total and trabecular bone density. Conclusions HLA-B27 transgenic rats lose an increasing amount of bone density and strength with progressing age, which is primarily mediated via increased bone remodeling in favor of bone resorption. Moreover, IBD and bone loss seem to be independent features of SpA in HLA-B27 transgenic rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Locking compression plates are used in various configurations with lack of detailed information on consequent bone healing. Study design In this in vivo study in sheep 5 different applications of locking compression plate (LCP) were tested using a 45° oblique osteotomy simulating simple fracture pattern. 60 Swiss Alpine sheep where assigned to 5 different groups with 12 sheep each (Group 1: interfragmentary lag screw and an LCP fixed with standard cortex screws as neutralisation plate; Group 2: interfragmentary lag screw and LCP with locking head screws; Group 3: compression plate technique (hybrid construct); Group 4: internal fixator without fracture gap; Group 5: internal fixator with 3 mm gap at the osteotomy site). One half of each group (6 sheep) was monitored for 6 weeks, and the other half (6 sheep) where followed for 12 weeks. Methods X-rays at 3, 6, 9 and 12 weeks were performed to monitor the healing process. After sacrifice operated tibiae were tested biomechanically for nondestructive torsion and compared to the tibia of the healthy opposite side. After testing specimens were processed for microradiography, histology, histomorphometry and assessment of calcium deposition by fluorescence microscopy. Results In all groups bone healing occurred without complications. Stiffness in biomechanical testing showed a tendency for higher values in G2 but results were not statistically significant. Values for G5 were significantly lower after 6 weeks, but after 12 weeks values had improved to comparable results. For all groups, except G3, stiffness values improved between 6 and 12 weeks. Histomorphometrical data demonstrate endosteal callus to be more marked in G2 at 6 weeks. Discussion and conclusion All five configurations resulted in undisturbed bone healing and are considered safe for clinical application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this randomised, controlled in vivo study in an ovine model was to investigate the effect of cylic pneumatic pressure on fracture healing. We performed a transverse osteotomy of the right radius in 37 sheep. They were randomised to a control group or a treatment group where they received cyclic loading of the osteotomy by the application of a pressure cuff around the muscles of the proximal forelimb. Sheep from both groups were killed at four or six weeks. Radiography, ultrasonography, biomechanical testing and histomorphometry were used to assess the differences between the groups. The area of periosteal callus, peak torsional strength, fracture stiffness, energy absorbed over the first 10° of torsion and histomorphometric analysis all showed that the osteotomies treated with the cyclic pneumatic pressure at four weeks were not significantly different from the control osteotomies at six weeks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To evaluate the effect of sildenafil, administered prior to renal ischemia/reperfusion (I/R), by scintigraphy and histopathological evaluation in rats. Methods: Twenty-four rats were divided randomly into two groups. They received 0.1 ml of 99mTechnetium-etilenodicisteine intravenous, and a baseline (initial) renal scintigraphy was performed. The rats underwent 60 minutes of ischemia by left renal artery clamping. The right kidney was not manipulated. The sildenafil group (n=12) received orally 1 mg/kg of sildenafil suspension 60 minutes before ischemia. Treatment with saline 0.9% in the control group (n=12). Half of the rats was assessed after 24 hours and half after seven days I/R, with new renal scintigraphy to study differential function. After euthanasia, kidneys were removed and subjected to histopathological examination. For statistical evaluation, Student t and Mann-Whitney tests were used. Results: In the control group rats, the left kidneys had significant functional deficit, seven days after I/R, whose scintigraphic pattern was consistent with acute tubular necrosis, compared with the initial scintigraphy (p<0.05). Sildenafil treatment resulted in better differential function of the left kidneys 24h after reperfusion, compared with controls. Histopathologically, the left kidney of control rats (24 hours after I/R) showed a higher degree of cellular necrosis when compared with the sildenafil treated rats (p<0.05). Conclusion: Sildenafil had a protective effect in rat kidneys subjected to normothermic I/R, demonstrated by scintigraphy and histomorphometry