866 resultados para High-Dimensional Space Geometrical Informatics (HDSGI)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new approach based on Discriminant Analysis to map a high dimensional image feature space onto a subspace which has the following advantages: 1. each dimension corresponds to a semantic likelihood, 2. an efficient and simple multiclass classifier is proposed and 3. it is low dimensional. This mapping is learnt from a given set of labeled images with a class groundtruth. In the new space a classifier is naturally derived which performs as well as a linear SVM. We will show that projecting images in this new space provides a database browsing tool which is meaningful to the user. Results are presented on a remote sensing database with eight classes, made available online. The output semantic space is a low dimensional feature space which opens perspectives for other recognition tasks. © 2005 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently there has been interest in combining generative and discriminative classifiers. In these classifiers features for the discriminative models are derived from the generative kernels. One advantage of using generative kernels is that systematic approaches exist to introduce complex dependencies into the feature-space. Furthermore, as the features are based on generative models standard model-based compensation and adaptation techniques can be applied to make discriminative models robust to noise and speaker conditions. This paper extends previous work in this framework in several directions. First, it introduces derivative kernels based on context-dependent generative models. Second, it describes how derivative kernels can be incorporated in structured discriminative models. Third, it addresses the issues associated with large number of classes and parameters when context-dependent models and high-dimensional feature-spaces of derivative kernels are used. The approach is evaluated on two noise-corrupted tasks: small vocabulary AURORA 2 and medium-to-large vocabulary AURORA 4 task. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of low-rank distance matrix completion. This problem amounts to recover the missing entries of a distance matrix when the dimension of the data embedding space is possibly unknown but small compared to the number of considered data points. The focus is on high-dimensional problems. We recast the considered problem into an optimization problem over the set of low-rank positive semidefinite matrices and propose two efficient algorithms for low-rank distance matrix completion. In addition, we propose a strategy to determine the dimension of the embedding space. The resulting algorithms scale to high-dimensional problems and monotonically converge to a global solution of the problem. Finally, numerical experiments illustrate the good performance of the proposed algorithms on benchmarks. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper addresses the problem of learning a regression model parameterized by a fixed-rank positive semidefinite matrix. The focus is on the nonlinear nature of the search space and on scalability to high-dimensional problems. The mathematical developments rely on the theory of gradient descent algorithms adapted to the Riemannian geometry that underlies the set of fixedrank positive semidefinite matrices. In contrast with previous contributions in the literature, no restrictions are imposed on the range space of the learned matrix. The resulting algorithms maintain a linear complexity in the problem size and enjoy important invariance properties. We apply the proposed algorithms to the problem of learning a distance function parameterized by a positive semidefinite matrix. Good performance is observed on classical benchmarks. © 2011 Gilles Meyer, Silvere Bonnabel and Rodolphe Sepulchre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large margin criteria and discriminative models are two effective improvements for HMM-based speech recognition. This paper proposed a large margin trained log linear model with kernels for CSR. To avoid explicitly computing in the high dimensional feature space and to achieve the nonlinear decision boundaries, a kernel based training and decoding framework is proposed in this work. To make the system robust to noise a kernel adaptation scheme is also presented. Previous work in this area is extended in two directions. First, most kernels for CSR focus on measuring the similarity between two observation sequences. The proposed joint kernels defined a similarity between two observation-label sequence pairs on the sentence level. Second, this paper addresses how to efficiently employ kernels in large margin training and decoding with lattices. To the best of our knowledge, this is the first attempt at using large margin kernel-based log linear models for CSR. The model is evaluated on a noise corrupted continuous digit task: AURORA 2.0. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by the problem of learning a linear regression model whose parameter is a large fixed-rank non-symmetric matrix, we consider the optimization of a smooth cost function defined on the set of fixed-rank matrices. We adopt the geometric framework of optimization on Riemannian quotient manifolds. We study the underlying geometries of several well-known fixed-rank matrix factorizations and then exploit the Riemannian quotient geometry of the search space in the design of a class of gradient descent and trust-region algorithms. The proposed algorithms generalize our previous results on fixed-rank symmetric positive semidefinite matrices, apply to a broad range of applications, scale to high-dimensional problems, and confer a geometric basis to recent contributions on the learning of fixed-rank non-symmetric matrices. We make connections with existing algorithms in the context of low-rank matrix completion and discuss the usefulness of the proposed framework. Numerical experiments suggest that the proposed algorithms compete with state-of-the-art algorithms and that manifold optimization offers an effective and versatile framework for the design of machine learning algorithms that learn a fixed-rank matrix. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We arrive at a necessary and sufficient criterion that can be readily used for interconvertibility between general, all-tripartite Gaussian states under local quantum operation. The derivation involves a systematic reduction that converts the original complex conditions in high-dimensional, 6n x 6n matrix space eventually into 2 x 2 matrix problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a new model which is based on the concept of cognizing theory. The method identifies subsets of the data which are embedded in arbitrary oriented lower dimensional space. We definite manifold covering in biomimetic pattern recognition, and study its property. Furthermore, we propose this manifold covering algorithm based on Biomimetic Pattern Recognition. At last, the experimental results for face recognition demonstrates that the correct rejection rate of the test samples excluded in the classes of training samples is very high and effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a new model which is based on the concept of cognizing theory. The method identifies subsets of the data which are embedded in arbitrary oriented lower dimensional space. We definite k-mean covering, and study its property. Covering subsets of points are repeatedly sampled to construct trial geometry space of various dimensions. The sampling corresponding to the feature space having the best cognition ability between a mode near zero and the rest is selected and the data points are partitioned on the basis of the best cognition ability. The repeated sampling then continues recursively on each block of the data. We propose this algorithm based on cognition models. The experimental results for face recognition demonstrate that the correct rejection rate of the test samples excluded in the classes of training samples is very high and effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orthogonal neighborhood-preserving projection (ONPP) is a recently developed orthogonal linear algorithm for overcoming the out-of-sample problem existing in the well-known manifold learning algorithm, i.e., locally linear embedding. It has been shown that ONPP is a strong analyzer of high-dimensional data. However, when applied to classification problems in a supervised setting, ONPP only focuses on the intraclass geometrical information while ignores the interaction of samples from different classes. To enhance the performance of ONPP in classification, a new algorithm termed discriminative ONPP (DONPP) is proposed in this paper. DONPP 1) takes into account both intraclass and interclass geometries; 2) considers the neighborhood information of interclass relationships; and 3) follows the orthogonality property of ONPP. Furthermore, DONPP is extended to the semisupervised case, i.e., semisupervised DONPP (SDONPP). This uses unlabeled samples to improve the classification accuracy of the original DONPP. Empirical studies demonstrate the effectiveness of both DONPP and SDONPP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled behavior of symmetric ABA rod-coil-rod triblock copolymer melts is studied by applying self-consistent-field lattice techniques in three-dimensional space. The phase diagram is constructed to understand the effects of the chain architecture on the self-assembled behavior. Four stable structures are observed for the ABA rod-coil-rod triblock, i.e., spherelike, lamellar, gyroidlike, and cylindrical structures. Different from AB rod-coil diblock and BAB coil-rod-coil triblock copolymers, the lamellar structure observed in ABA rod-coil-rod triblock copolymer melts is not stable for high volume fraction of the rod component (f(rod)=0.8), which is attributed to the intramolecular interactions between the two rod blocks of the polymer chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-assembly of symmetric coil-rod-coil ABA-type triblock copolymer melts is studied by applying self-consistent field lattice techniques in a three-dimensional space. The self-assembled ordered structures differ significantly with the variation of the volume fraction of the rod component, which include lamellar, wave lamellar, gyroid, perforated lamellar, cylindrical, and spherical-like phases. To understand the physical essence of these phases and the regimes of occurrence, we construct the phase diagram, which matches qualitatively with the existing experimental results. Compared with the coil-rod AB diblock copolymer, our results revealed that the interfacial grafting density of the separating rod and coil segments shows important influence on the self-assembly behaviors of symmetric coil-rod-coil ABA triblock copolymer melts. We found that the order-disorder transition point changes from f(rod)=0.5 for AB diblock copolymers to f(rod)=0.6 for ABA triblock copolymers. Our results also show that the spherical-like and cylindrical phases occupy most of the region in the phase diagram, and the lamellar phase is found stable only at the high volume fraction of the rod.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five variables for phenol derivatives were calculated by molecular projection in three-dimensional space which were combined with eight quantum-chemical parameters and three Am indices. These variables were selected by using leaps-and-bounds regression analysis. Multiple linear regression analysis and artificial neural networks' were performed, and the results obtained by using. artificial neural networks are superior than that obtained by using multiple linear regression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

一般说来,离群点是远离其他数据点的数据,但很可能包含着极其重要的信息.提出了一种新的离群模糊核聚类算法来发现样本集中的离群点.通过Mercer核把原来的数据空间映射到特征空间,并为特征空间的每个向量分配一个动态权值,在经典的FCM模糊聚类算法的基础上得到了一个特征空间内的全新的聚类目标函数,通过对目标函数的优化,最终得到了各个数据的权值,根据权值的大小标识出样本集中的离群点.仿真实验的结果表明了该离群模糊核聚类算法的可行性和有效性.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In low-level vision, the representation of scene properties such as shape, albedo, etc., are very high dimensional as they have to describe complicated structures. The approach proposed here is to let the image itself bear as much of the representational burden as possible. In many situations, scene and image are closely related and it is possible to find a functional relationship between them. The scene information can be represented in reference to the image where the functional specifies how to translate the image into the associated scene. We illustrate the use of this representation for encoding shape information. We show how this representation has appealing properties such as locality and slow variation across space and scale. These properties provide a way of improving shape estimates coming from other sources of information like stereo.