870 resultados para Heat Solar Energy
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Includes bibliography
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Solar heaters are an appropriate technology in tropical and sub-tropical climates to heat bath water by solar energy. Low-cost solar heaters meet the demand of low-income rural communities which currently do not have access to this technology. Current research analyzes the economic viability of solar heaters, built with recyclable materials, to reduce electric energy bill. A solar heating system was built consisting of recyclable materials in accordance with the manuals provided by the Secretariat of Environment of the state of Paraná (SEMA). Duration of use of electric showers by families of rural properties was determined to calculate expenses and billing of electricity. Simulation and material costs showed that the system was feasible. Commercial solar heaters could be replaced at a cost of R$ 22.61 per month during 13 months.
Resumo:
In the United States the peak electrical use occurs during the summer. In addition, the building sector consumes a major portion of the annual electrical energy consumption. One of the main energy consuming components in the building sector is the Heating, Ventilation, and Air-Conditioning (HVAC) systems. This research studies the feasibility of implementing a solar driven underground cooling system that could contribute to reducing building cooling loads. The developed system consists of an Earth-to-Air Heat Exchanger (EAHE) coupled with a solar chimney that provides a natural cool draft to the test facility building at the Solar Energy Research Test Facility in Omaha, Nebraska. Two sets of tests have been conducted: a natural passively driven airflow test and a forced fan assisted airflow test. The resulting data of the tests has been analyzed to study the thermal performance of the implemented system. Results show that: The underground soil proved to be a good heat sink at a depth of 9.5ft, where its temperature fluctuates yearly in the range of (46.5°F-58.2°F). Furthermore, the coupled system during the natural airflow modes can provide good thermal comfort conditions that comply with ASHRAE standard 55-2004. It provided 0.63 tons of cooling, which almost covered the building design cooling load (0.8 tons, extreme condition). On the other hand, although the coupled system during the forced airflow mode could not comply with ASHRAE standard 55-2004, it provided 1.27 tons of cooling which is even more than the building load requirements. Moreover, the underground soil experienced thermal saturation during the forced airflow mode due to the oversized fan, which extracted much more airflow than the EAHE ability for heat dissipation and the underground soil for heat absorption. In conclusion, the coupled system proved to be a feasible cooling system, which could be further improved with a few design recommendations.
Resumo:
The relation between the intercepted light and orchard productivity was considered linear, although this dependence seems to be more subordinate to planting system rather than light intensity. At whole plant level not always the increase of irradiance determines productivity improvement. One of the reasons can be the plant intrinsic un-efficiency in using energy. Generally in full light only the 5 – 10% of the total incoming energy is allocated to net photosynthesis. Therefore preserving or improving this efficiency becomes pivotal for scientist and fruit growers. Even tough a conspicuous energy amount is reflected or transmitted, plants can not avoid to absorb photons in excess. The chlorophyll over-excitation promotes the reactive species production increasing the photoinhibition risks. The dangerous consequences of photoinhibition forced plants to evolve a complex and multilevel machine able to dissipate the energy excess quenching heat (Non Photochemical Quenching), moving electrons (water-water cycle , cyclic transport around PSI, glutathione-ascorbate cycle and photorespiration) and scavenging the generated reactive species. The price plants must pay for this equipment is the use of CO2 and reducing power with a consequent decrease of the photosynthetic efficiency, both because some photons are not used for carboxylation and an effective CO2 and reducing power loss occurs. Net photosynthesis increases with light until the saturation point, additional PPFD doesn’t improve carboxylation but it rises the efficiency of the alternative pathways in energy dissipation but also ROS production and photoinhibition risks. The wide photo-protective apparatus, although is not able to cope with the excessive incoming energy, therefore photodamage occurs. Each event increasing the photon pressure and/or decreasing the efficiency of the described photo-protective mechanisms (i.e. thermal stress, water and nutritional deficiency) can emphasize the photoinhibition. Likely in nature a small amount of not damaged photosystems is found because of the effective, efficient and energy consuming recovery system. Since the damaged PSII is quickly repaired with energy expense, it would be interesting to investigate how much PSII recovery costs to plant productivity. This PhD. dissertation purposes to improve the knowledge about the several strategies accomplished for managing the incoming energy and the light excess implication on photo-damage in peach. The thesis is organized in three scientific units. In the first section a new rapid, non-intrusive, whole tissue and universal technique for functional PSII determination was implemented and validated on different kinds of plants as C3 and C4 species, woody and herbaceous plants, wild type and Chlorophyll b-less mutant and monocot and dicot plants. In the second unit, using a “singular” experimental orchard named “Asymmetric orchard”, the relation between light environment and photosynthetic performance, water use and photoinhibition was investigated in peach at whole plant level, furthermore the effect of photon pressure variation on energy management was considered on single leaf. In the third section the quenching analysis method suggested by Kornyeyev and Hendrickson (2007) was validate on peach. Afterwards it was applied in the field where the influence of moderate light and water reduction on peach photosynthetic performances, water requirements, energy management and photoinhibition was studied. Using solar energy as fuel for life plant is intrinsically suicidal since the high constant photodamage risk. This dissertation would try to highlight the complex relation existing between plant, in particular peach, and light analysing the principal strategies plants developed to manage the incoming light for deriving the maximal benefits as possible minimizing the risks. In the first instance the new method proposed for functional PSII determination based on P700 redox kinetics seems to be a valid, non intrusive, universal and field-applicable technique, even because it is able to measure in deep the whole leaf tissue rather than the first leaf layers as fluorescence. Fluorescence Fv/Fm parameter gives a good estimate of functional PSII but only when data obtained by ad-axial and ab-axial leaf surface are averaged. In addition to this method the energy quenching analysis proposed by Kornyeyev and Hendrickson (2007), combined with the photosynthesis model proposed by von Caemmerer (2000) is a forceful tool to analyse and study, even in the field, the relation between plant and environmental factors such as water, temperature but first of all light. “Asymmetric” training system is a good way to study light energy, photosynthetic performance and water use relations in the field. At whole plant level net carboxylation increases with PPFD reaching a saturating point. Light excess rather than improve photosynthesis may emphasize water and thermal stress leading to stomatal limitation. Furthermore too much light does not promote net carboxylation improvement but PSII damage, in fact in the most light exposed plants about 50-60% of the total PSII is inactivated. At single leaf level, net carboxylation increases till saturation point (1000 – 1200 μmolm-2s-1) and light excess is dissipated by non photochemical quenching and non net carboxylative transports. The latter follows a quite similar pattern of Pn/PPFD curve reaching the saturation point at almost the same photon flux density. At middle-low irradiance NPQ seems to be lumen pH limited because the incoming photon pressure is not enough to generate the optimum lumen pH for violaxanthin de-epoxidase (VDE) full activation. Peach leaves try to cope with the light excess increasing the non net carboxylative transports. While PPFD rises the xanthophyll cycle is more and more activated and the rate of non net carboxylative transports is reduced. Some of these alternative transports, such as the water-water cycle, the cyclic transport around the PSI and the glutathione-ascorbate cycle are able to generate additional H+ in lumen in order to support the VDE activation when light can be limiting. Moreover the alternative transports seems to be involved as an important dissipative way when high temperature and sub-optimal conductance emphasize the photoinhibition risks. In peach, a moderate water and light reduction does not determine net carboxylation decrease but, diminishing the incoming light and the environmental evapo-transpiration request, stomatal conductance decreases, improving water use efficiency. Therefore lowering light intensity till not limiting levels, water could be saved not compromising net photosynthesis. The quenching analysis is able to partition absorbed energy in the several utilization, photoprotection and photo-oxidation pathways. When recovery is permitted only few PSII remained un-repaired, although more net PSII damage is recorded in plants placed in full light. Even in this experiment, in over saturating light the main dissipation pathway is the non photochemical quenching; at middle-low irradiance it seems to be pH limited and other transports, such as photorespiration and alternative transports, are used to support photoprotection and to contribute for creating the optimal trans-thylakoidal ΔpH for violaxanthin de-epoxidase. These alternative pathways become the main quenching mechanisms at very low light environment. Another aspect pointed out by this study is the role of NPQ as dissipative pathway when conductance becomes severely limiting. The evidence that in nature a small amount of damaged PSII is seen indicates the presence of an effective and efficient recovery mechanism that masks the real photodamage occurring during the day. At single leaf level, when repair is not allowed leaves in full light are two fold more photoinhibited than the shaded ones. Therefore light in excess of the photosynthetic optima does not promote net carboxylation but increases water loss and PSII damage. The more is photoinhibition the more must be the photosystems to be repaired and consequently the energy and dry matter to allocate in this essential activity. Since above the saturation point net photosynthesis is constant while photoinhibition increases it would be interesting to investigate how photodamage costs in terms of tree productivity. An other aspect of pivotal importance to be further widened is the combined influence of light and other environmental parameters, like water status, temperature and nutrition on peach light, water and phtosyntate management.
Resumo:
A new concept for a solar thermal electrolytic process was developed for the production of H-2 from water. A metal oxide is reduced to a lower oxidation state in air with concentrated solar energy. The reduced oxide is then used either as an anode or solute for the electrolytic production of H-2 in either an aqueous acid or base solution. The presence of the reduced metal oxide as part of the electrolytic cell decreases the potential required for water electrolysis below the ideal 1.23 V required when H-2 and O-2 evolve at 1 bar and 298 K. During electrolysis, H-2 evolves at the cathode at 1 bar while the reduced metal oxide is returned to its original oxidation state, thus completing the H-2 production cycle. Ideal sunlight-to-hydrogen thermal efficiencies were established for three oxide systems: Fe2O3-Fe3O4, Co3O4-CoO, and Mn2O3-Mn3O4. The ideal efficiencies that include radiation heat loss are as high or higher than corresponding ideal values reported in the solar thermal chemistry literature. An exploratory experimental study for the iron oxide system confirmed that the electrolytic and thermal reduction steps occur in a laboratory scale environment.
Resumo:
We describe and analyze the efficiency of a new solar-thermochemical reactor concept, which employs a moving packed bed of reactive particles produce of H2 or CO from solar energy and H2O or CO2. The packed bed reactor incorporates several features essential to achieving high efficiency: spatial separation of pressures, temperature, and reaction products in the reactor; solid–solid sensible heat recovery between reaction steps; continuous on-sun operation; and direct solar illumination of the working material. Our efficiency analysis includes material thermodynamics and a detailed accounting of energy losses, and demonstrates that vacuum pumping, made possible by the innovative pressure separation approach in our reactor, has a decisive efficiency advantage over inert gas sweeping. We show that in a fully developed system, using CeO2 as a reactive material, the conversion efficiency of solar energy into H2 and CO at the design point can exceed 30%. The reactor operational flexibility makes it suitable for a wide range of operating conditions, allowing for high efficiency on an annual average basis. The mixture of H2 and CO, known as synthesis gas, is not only usable as a fuel but is also a universal starting point for the production of synthetic fuels compatible with the existing energy infrastructure. This would make it possible to replace petroleum derivatives used in transportation in the U.S., by using less than 0.7% of the U.S. land area, a roughly two orders of magnitude improvement over mature biofuel approaches. In addition, the packed bed reactor design is flexible and can be adapted to new, better performing reactive materials.
Resumo:
We describe and analyze the efficiency of a new solar-thermochemical reactor concept, which employs a moving packed bed of reactive particles produce of H-2 or CO from solar energy and H2O or CO2. The packed bed reactor incorporates several features essential to achieving high efficiency: spatial separation of pressures, temperature, and reaction products in the reactor; solid-solid sensible heat recovery between reaction steps; continuous on-sun operation; and direct solar illumination of the working material. Our efficiency analysis includes material thermodynamics and a detailed accounting of energy losses, and demonstrates that vacuum pumping, made possible by the innovative pressure separation approach in our reactor, has a decisive efficiency advantage over inert gas sweeping. We show that in a fully developed system, using CeO2 as a reactive material, the conversion efficiency of solar energy into H-2 and CO at the design point can exceed 30%. The reactor operational flexibility makes it suitable for a wide range of operating conditions, allowing for high efficiency on an annual average basis. The mixture of H-2 and CO, known as synthesis gas, is not only usable as a fuel but is also a universal starting point for the production of synthetic fuels compatible with the existing energy infrastructure. This would make it possible to replace petroleum derivatives used in transportation in the U. S., by using less than 0.7% of the U. S. land area, a roughly two orders of magnitude improvement over mature biofuel approaches. In addition, the packed bed reactor design is flexible and can be adapted to new, better performing reactive materials.
Resumo:
During a four weeks anchoring station of R.V. ,,Meteor" on the equator at 30° W longitude, vertical profiles of wind, temperature, and humidity were measured by means of a meteorological buoy carrying a mast of 10 m height. After eliminating periods of instrumental failure, 18 days are available for the investigation of the diurnal variations of the meteorological parameters and 9 days for the investigation of the vertical heat fluxes. The diurnal variations of the above mentioned quantities are caused essentially by two periodic processes: the 24-hourly changing solar energy supply and the 12-hourly oscillation of air pressure, which both originate in the daily rotation of the earth. While the temperature of the water and of the near water layers of the air show a 24 hours period in their diurnal course, the wind speed, as a consequence of the pressure wave, has a 12 hours period, which is also observable in evaporation and, consequently, in the water vapor content of the surface layer. Concerning the temperature, a weak dependence of the daily amplitude on height was determined. Further investigation of the profiles yields relations between the vertical gradients of wind, temperature, and water vapor and the wind speed, the difference between sea and air of temperature and water vapor, respectively, thus giving a contribution to the problem of parameterizing the vertical fluxes. Mean profile coefficients for the encountered stabilities, which were slightly unstable, are presented, and correction terms are given due to the fact that the conditions at the very surface are not sufficiently represented by measuring in a water depth of 20 cm and assuming water vapor saturation. This is especially true for the water vapor content, where the relation between the gradient and the air-sea difference suggests a reduction of relative humidity to appr. 96% at the very surface, if the gradients are high. This effect may result in an overestimation of the water vapor flux, if a ,,bulk"-formula is used. Finally sensible and latent heat fluxes are computed by means of a gradient-formula. The influence of stability on the transfer process is taken into account. As the air-sea temperature differences are small, sensible heat plays no important role in that region, but latent heat shows several interesting features. Within the measuring period of 18 days, a regular variation by a factor of ten is observed. Unperiodic short term variations are superposed by periodic diurnal variations. The mean diurnal course shows a 12-hours period caused by the vertical wind speed gradient superposed by a 24-hours period due to the changing stabilities. Mean values within the measuring period are 276 ly/day for latent heat and 9.41y/day for sensible heat.
Resumo:
The heterogeneous incoming heat flux in solar parabolic trough absorber tubes generates huge temperature difference in each pipe section. Helical internal fins can reduce this effect, homogenising the temperature profile and reducing thermal stress with the drawback of increasing pressure drop. Another effect is the decreasing of the outer surface temperature and thermal losses, improving the thermal efficiency of the collector. The application of internal finned tubes for the design of parabolic trough collectors is analysed with computational fluid dynamics tools. Our numerical approach has been qualified with the computational estimation of reported experimental data regarding phenomena involved in finned tube applications and solar irradiation of parabolic trough collector. The application of finned tubes to the design of parabolic trough collectors must take into account issues as the pressure losses, thermal losses and thermo-mechanical stress, and thermal fatigue. Our analysis shows an improvement potential in parabolic trough solar plants efficiency by the application of internal finned tubes.