952 resultados para Head Lice
Resumo:
We present a model for the self-organized formation of place cells, head-direction cells, and spatial-view cells in the hippocampal formation based on unsupervised learning on quasi-natural visual stimuli. The model comprises a hierarchy of Slow Feature Analysis (SFA) nodes, which were recently shown to reproduce many properties of complex cells in the early visual system []. The system extracts a distributed grid-like representation of position and orientation, which is transcoded into a localized place-field, head-direction, or view representation, by sparse coding. The type of cells that develops depends solely on the relevant input statistics, i.e., the movement pattern of the simulated animal. The numerical simulations are complemented by a mathematical analysis that allows us to accurately predict the output of the top SFA layer.
Resumo:
Creating a realistic talking head, which given an arbitrary text as input generates a realistic looking face speaking the text, has been a long standing research challenge. Talking heads which cannot express emotion have been made to look very realistic by using concatenative approaches [Wang et al. 2011], however allowing the head to express emotion creates a much more challenging problem and model based approaches have shown promise in this area. While 2D talking heads currently look more realistic than their 3D counterparts, they are limited both in the range of poses they can express and in the lighting conditions that they can be rendered under. Previous attempts to produce videorealistic 3D expressive talking heads [Cao et al. 2005] have produced encouraging results but not yet achieved the level of realism of their 2D counterparts.
Resumo:
The spawning areas and early development of long spiky-head carp, Luciobrama macrocephalus (Lacepede), an endemic fish species in China, were investigated in the Yangtze River and Pearl River of central and southeastern China between 1961 and 1993. The potamodromous fish migrated upstream to spawn between May and July as the floodwater began to rise. The water-hardened eggs drifted down the river, and the embryos and larvae developed in the course of drifting. The spawning areas of the fish were widely found in the upper and middle main channels and large tributaries. Two large dams (Gezhouba dam and Danjiangkou dam) did not significantly impact on the reproduction of the fish. Fifty stages of the early development from one cell to the juvenile with fully formed fins were observed and characterized pictorially. The larvae of long spiky-head carp could be distinguished from the larvae of other co-occurring species by counting the number of somites and comparing the proportion of sizes of eye to otic capsule.
Resumo:
Single crystals of head-to-tail poly(3-hexylthiophene)s have been grown through the method of isothermal solution crystallization. Electron diffraction in combination with powder X-ray diffraction revealed the crystal structure, a = 1.52 nm, b = 3.36 nm, c = 1.56 nm and alpha = beta = gamma = 90 degrees.
Resumo:
Cystatins form a large family of cysteine protease inhibitors found in a wide arrange of organisms. Studies have indicated that mammalian cystatins play important roles under both physiological and pathological conditions. However, much less is known about fish cystatins. In this report, we described the identification and analysis of a cystatin B homologue, SmCytB, from turbot Scophthalmus maximus. The open reading frame of SmCytB is 300 bp, which encodes a 99-residue protein that shares high levels of sequence identities with the cystatin B of a number of fish species and contains the conserved cysteine protease inhibitor motif of cystatin B. Constitutive expression of SmCytB is high in muscle, brain, heart and liver, and low in spleen. blood, gill and kidney. Bacterial infection upregulates SmCytB expression in kidney, spleen, liver and brain but not in muscle or heart. Functional analysis showed that recombinant SmCytB purified from Escherichia colt exhibits apparent cysteine protease inhibitor activity. Transient overexpression of SmCytB in head kidney macrophages enhances macrophage bactericidal activity probably through a nitric oxide-independent mechanism. These results indicate that SmCytB is involved in the immune defense of turbot against bacterial infection. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The utility of vision-based face tracking for dual pointing tasks is evaluated. We first describe a 3-D face tracking technique based on real-time parametric motion-stereo, which is non-invasive, robust, and self-initialized. The tracker provides a real-time estimate of a ?frontal face ray? whose intersection with the display surface plane is used as a second stream of input for scrolling or pointing, in paral-lel with hand input. We evaluated the performance of com-bined head/hand input on a box selection and coloring task: users selected boxes with one pointer and colors with a second pointer, or performed both tasks with a single pointer. We found that performance with head and one hand was intermediate between single hand performance and dual hand performance. Our results are consistent with previously reported dual hand conflict in symmetric pointing tasks, and suggest that a head-based input stream should be used for asymmetric control.
Resumo:
A novel method for 3D head tracking in the presence of large head rotations and facial expression changes is described. Tracking is formulated in terms of color image registration in the texture map of a 3D surface model. Model appearance is recursively updated via image mosaicking in the texture map as the head orientation varies. The resulting dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face recognition, facial expressions analysis, lip reading, and eye tracking. Parameters are estimated via a robust minimization procedure; this provides robustness to occlusions, wrinkles, shadows, and specular highlights. The system was tested on a variety of sequences taken with low quality, uncalibrated video cameras. Experimental results are reported.
Resumo:
An automated system for detection of head movements is described. The goal is to label relevant head gestures in video of American Sign Language (ASL) communication. In the system, a 3D head tracker recovers head rotation and translation parameters from monocular video. Relevant head gestures are then detected by analyzing the length and frequency of the motion signal's peaks and valleys. Each parameter is analyzed independently, due to the fact that a number of relevant head movements in ASL are associated with major changes around one rotational axis. No explicit training of the system is necessary. Currently, the system can detect "head shakes." In experimental evaluation, classification performance is compared against ground-truth labels obtained from ASL linguists. Initial results are promising, as the system matches the linguists' labels in a significant number of cases.
Resumo:
An improved technique for 3D head tracking under varying illumination conditions is proposed. The head is modeled as a texture mapped cylinder. Tracking is formulated as an image registration problem in the cylinder's texture map image. To solve the registration problem in the presence of lighting variation and head motion, the residual error of registration is modeled as a linear combination of texture warping templates and orthogonal illumination templates. Fast and stable on-line tracking is then achieved via regularized, weighted least squares minimization of the registration error. The regularization term tends to limit potential ambiguities that arise in the warping and illumination templates. It enables stable tracking over extended sequences. Tracking does not require a precise initial fit of the model; the system is initialized automatically using a simple 2-D face detector. The only assumption is that the target is facing the camera in the first frame of the sequence. The warping templates are computed at the first frame of the sequence. Illumination templates are precomputed off-line over a training set of face images collected under varying lighting conditions. Experiments in tracking are reported.
Resumo:
An improved technique for 3D head tracking under varying illumination conditions is proposed. The head is modeled as a texture mapped cylinder. Tracking is formulated as an image registration problem in the cylinder's texture map image. The resulting dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face recognition, facial expressions analysis, lip reading, and eye tracking. To solve the registration problem in the presence of lighting variation and head motion, the residual error of registration is modeled as a linear combination of texture warping templates and orthogonal illumination templates. Fast and stable on-line tracking is achieved via regularized, weighted least squares minimization of the registration error. The regularization term tends to limit potential ambiguities that arise in the warping and illumination templates. It enables stable tracking over extended sequences. Tracking does not require a precise initial fit of the model; the system is initialized automatically using a simple 2D face detector. The only assumption is that the target is facing the camera in the first frame of the sequence. The formulation is tailored to take advantage of texture mapping hardware available in many workstations, PC's, and game consoles. The non-optimized implementation runs at about 15 frames per second on a SGI O2 graphic workstation. Extensive experiments evaluating the effectiveness of the formulation are reported. The sensitivity of the technique to illumination, regularization parameters, errors in the initial positioning and internal camera parameters are analyzed. Examples and applications of tracking are reported.
Resumo:
Accurate head tilt detection has a large potential to aid people with disabilities in the use of human-computer interfaces and provide universal access to communication software. We show how it can be utilized to tab through links on a web page or control a video game with head motions. It may also be useful as a correction method for currently available video-based assistive technology that requires upright facial poses. Few of the existing computer vision methods that detect head rotations in and out of the image plane with reasonable accuracy can operate within the context of a real-time communication interface because the computational expense that they incur is too great. Our method uses a variety of metrics to obtain a robust head tilt estimate without incurring the computational cost of previous methods. Our system runs in real time on a computer with a 2.53 GHz processor, 256 MB of RAM and an inexpensive webcam, using only 55% of the processor cycles.
Resumo:
This article describes how corollary discharges from outflow eye movement commands can be transformed by two stages of opponent neural processing into a head-centered representation of 3-D target position. This representation implicitly defines a cyclopean coordinate system whose variables approximate the binocular vergence and spherical horizontal and vertical angles with respect to the observer's head. Various psychophysical data concerning binocular distance perception and reaching behavior are clarified by this representation. The representation provides a foundation for learning head-centered and body-centered invariant representations of both foveated and non-foveated 3-D target positions. It also enables a solution to be developed of the classical motor equivalence problem, whereby many different joint configurations of a redundant manipulator can all be used to realize a desired trajectory in 3-D space.