799 resultados para Hair fibre


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretically, we analyse the dispersion compensation characteristics of the chirped fibre grating (CFG) in an optical fibre cable television (CATV) system and obtain the analytic expression of the composite second-order (CSO) distortion using the time-domain form of the field envelope wave equation. The obtained result is in good agreement with the numerical simulation result. Experimentally, we verify the result by making use of the tunable characteristics of CFG to change the dispersion compensation amount and obtain an optimal CSO performance in a 125km fibre transmission link. Both the theoretical and experimental results show that the CSO performance can be improved by properly choosing the dispersion compensation amount for a certain fibre transmission link.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hair cells from the bull frog's sacculus, a vestibular organ responding to substrate-borne vibration, possess electrically resonant membrane properties which maximize the sensitivity of each cell to a particular frequency of mechanical input. The electrical resonance of these cells and its underlying ionic basis were studied by applying gigohm-seal recording techniques to solitary hair cells enzymatically dissociated from the sacculus. The contribution of electrical resonance to frequency selectivity was assessed from microelectrode recordings from hair cells in an excised preparation of the sacculus.

Electrical resonance in the hair cell is demonstrated by damped membrane-potential oscillations in response to extrinsic current pulses applied through the recording pipette. This response is analyzed as that of a damped harmonic oscillator. Oscillation frequency rises with membrane depolarization, from 80-160 Hz at resting potential to asymptotic values of 200-250 Hz. The sharpness of electrical tuning, denoted by the electrical quality factor, Qe, is a bell-shaped function of membrane voltage, reaching a maximum value around eight at a membrane potential slightly positive to the resting potential.

In whole cells, three time-variant ionic currents are activated at voltages more positive than -60 to -50 mV; these are identified as a voltage-dependent, non-inactivating Ca current (Ica), a voltage-dependent, transient K current (Ia), and a Ca-dependent K current (Ic). The C channel is identified in excised, inside-out membrane patches on the basis of its large conductance (130-200 pS), its selective permeability to Kover Na or Cl, and its activation by internal Ca ions and membrane depolarization. Analysis of open- and closed-lifetime distributions suggests that the C channel can assume at least two open and three closed kinetic states.

Exposing hair cells to external solutions that inhibit the Ca or C conductances degrades the electrical resonance properties measured under current-clamp conditions, while blocking the A conductance has no significant effect, providing evidence that only the Ca and C conductances participate in the resonance mechanism. To test the sufficiency of these two conductances to account for electrical resonance, a mathematical model is developed that describes Ica, Ic, and intracellular Ca concentration during voltage-clamp steps. Ica activation is approximated by a third-order Hodgkin-Huxley kinetic scheme. Ca entering the cell is assumed to be confined to a small submembrane compartment which contains an excess of Ca buffer; Ca leaves this space with first-order kinetics. The Ca- and voltage-dependent activation of C channels is described by a five-state kinetic scheme suggested by the results of single-channel observations. Parameter values in the model are adjusted to fit the waveforms of Ica and Ic evoked by a series of voltage-clamp steps in a single cell. Having been thus constrained, the model correctly predicts the character of voltage oscillations produced by current-clamp steps, including the dependencies of oscillation frequency and Qe on membrane voltage. The model shows quantitatively how the Ca and C conductances interact, via changes in intracellular Ca concentration, to produce electrical resonance in a vertebrate hair cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a refractive index pro. le design enabling us to obtain a. at modal field around the fibre centre is investigated. The theoretical approach for designing such multilayer large flattened mode (LFM) optical fibres is presented. A comparison is made between the properties of a three-layer LFM structure and a standard step-index pro. le with the same core size. The obtained results indicate that the effective area of the LFM fibre is about twice as large as that of the standard step-index fibre, but the LFM fibre has less effective ability to filter out the higher order modes than the standard step-index fibre with the same bending radius.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method incorporating the shielded method and the post-processing method has been proposed to fabricate the pi-phase-shilted fibre grating. Then an Er-doped pi-phase-shifted distributed feedback fibre grating laser has been fabricated using the grating. The laser threshold is 20 mW. When pumped with 90 mW light at 980 nm, the laser gives an output of 1.1 mW. Its signal-to-noise ratio is better than 60 dB. It is demonstrated that the laser is single mode operation by means of a Fabry-Perot scanning interferometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By employing a simple model of describing three-level lasers, we have theoretically investigated the effect of photon lifetime on the output dynamics of Er-doped distributed feedback fibre lasers. And based on the theoretical analysis we have proposed a promising method to suppress self-pulsing behaviour in the fibre lasers.

Relevância:

20.00% 20.00%

Publicador: