942 resultados para HEXAGONAL INN
Resumo:
This letter presents the design of a thin microwave absorber which exhibits a -10 dB reflectivity bandwidth of 108% at normal incidence and 16% for simultaneous suppression of TE and TM polarised waves over the angular range 0-45° is presented. The structure consists of a 3 mm-thick metal backed frequency selective surface (FSS) with four resistively loaded hexagonal loop elements in each unit cell. The surface resistivity and width of the loops are carefully chosen to maximise the bandwidth by merging the reflection nulls that are generated by the multi-resonant absorber. Measurement and simulation results are in good agreement over the broad frequency range 7.8-24 GHz.
Resumo:
The second harmonic generation (SHG) intensity spectrum of SiC, ZnO, GaN two-dimensional hexagonal crystals is calculated by using a real-time first-principles approach based on Green's function theory [Attaccalite et al., Phys. Rev. B: Condens. Matter Mater. Phys. 2013 88, 235113]. This approach allows one to go beyond the independent particle description used in standard first-principles nonlinear optics calculations by including quasiparticle corrections (by means of the GW approximation), crystal local field effects and excitonic effects. Our results show that the SHG spectra obtained using the latter approach differ significantly from their independent particle counterparts. In particular they show strong excitonic resonances at which the SHG intensity is about two times stronger than within the independent particle approximation. All the systems studied (whose stabilities have been predicted theoretically) are transparent and at the same time exhibit a remarkable SHG intensity in the range of frequencies at which Ti:sapphire and Nd:YAG lasers operate; thus they can be of interest for nanoscale nonlinear frequency conversion devices. Specifically the SHG intensity at 800 nm (1.55 eV) ranges from about 40-80 pm V(-1) in ZnO and GaN to 0.6 nm V(-1) in SiC. The latter value in particular is 1 order of magnitude larger than values in standard nonlinear crystals.
Resumo:
We present an algorithm for bandwidth allocation for delay-sensitive traffic in multi-hop wireless sensor networks. Our solution considers both periodic as well as aperiodic real-time traffic in an unified manner. We also present a distributed MAC protocol that conforms to the bandwidth allocation and thus satisfies the latency requirements of realtime traffic. Additionally, the protocol provides best-effort service to non real-time traffic. We derive the utilization bounds of our MAC protocol.
Resumo:
Hexagonal wireless sensor network refers to a network topology where a subset of nodes have six peer neighbors. These nodes form a backbone for multi-hop communications. In a previous work, we proposed the use of hexagonal topology in wireless sensor networks and discussed its properties in relation to real-time (bounded latency) multi-hop communications in large-scale deployments. In that work, we did not consider the problem of hexagonal topology formation in practice - which is the subject of this research. In this paper, we present a decentralized algorithm that forms the hexagonal topology backbone in an arbitrary but sufficiently dense network deployment. We implemented a prototype of our algorithm in NesC for TinyOS based platforms. We present data from field tests of our implementation, collected using a deployment of fifty wireless sensor nodes.
Resumo:
The first Clifton Hotel was built in 1832, but was destroyed by fire in 1898. A second hotel was built on the same site in 1906. This second hotel was much larger and included a branch of the Imperial Bank, a Gray Coach Lines Terminal, and several stores. For many years the inn was operated by George Major, but came under the control of the United Hotel Co. in 1919. The hotel was destroyed by fire in 1932. Oakes Garden Theatre currently occupies the location where the hotels once stood.
Resumo:
UANL
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
In this thesis, the author proposes a new geometry DR antenna-the Hexagonal Dielectric Resonator Antenna(HDRA)-capable of multiple frequency operation on a single feed of excitation.This avoids the conventional use of miniaturizes the structure.The properties of the HDRA on microstrip as well as coaxial feeding have been studied.The analysis of radiation characteristics indicates a gain comparable with other shapes.The antenna is capable of providing efficiency around 98%.The simulation using HFSS also yields results in conformity with the experimental results.Mode analysis is carried out and the modes are identified.The determination of the reflection characteristics through theoretical analysis using FDTD validates the multifrequency operation of the antenna,The antenna finds application in DCT,PCS and WLAN bands.