974 resultados para HEAT-STABLE SALTS
Resumo:
Stable isotopic measurements of G. sacculifer and C. wuellerstorfi in a core from the western equatorial Atlantic imply that there are parallel, suborbital oscillations in surface water hydrography and deep water circulation occurring during oxygen isotope stages 2 and 3. Low values of G. sacculifer delta18O accompany high values of C. wuellerstorfi delta13C, linking warmer sea surface temperatures (SSTs) in the tropics with increased production of lower North Atlantic Deep Water (NADW). The amplitude of the delta18O oscillations is 0.6 per mil (or 2°-3°C), which is superimposed on a glacial/interglacial amplitude of about 2.1per mil. Using the G. sacculifer delta18O data, we calculate that surface waters were colder during stage 2 than calculated by CLIMAP [1976, 1981]. The longer-period (>2 kyr) oscillations in air temperature recorded in the Greenland and Antarctic ice cores appear to correlate with oscillations in sea surface temperature in the equatorial Atlantic. The magnitude of these oscillations in tropical SST is too large to have resulted from changes in meridional heat transport caused by the global conveyor alone. The apparent synchroneity of equatorial SST and polar air temperature changes, as well as the amplitude of the SST changes at the equator, are consistent with the climate effects expected from changes in the atmosphere's greenhouse gas content (H2Ovapor, CO2, and CH4).
Resumo:
Early Paleogene warm climates may have been linked to different modes and sources of deepwater formation. Warm polar temperatures of the Paleocene and Eocene may have resulted from either increased atmospheric trace gases or increased heat transport through deep and intermediate waters. The possibility of increasing ocean heat transport through the production of warm saline deep waters (WSDW) in the Tethyan region has generated considerable interest. In addition, General Circulation Model results indicate that deepwater source regions may be highly sensitive to changing basin configurations. To decipher deepwater changes, we examined detailed benthic foraminiferal faunal and isotopic records of the late Paleocene through the early Eocene (~60 to 50 Ma) from two critical regions: the North Atlantic (Bay of Biscay Site 401) and the Pacific (Shatsky Rise Site 577). These records are compared with published data from the Southern Ocean (Maud Rise Site 690, Islas Orcadas Rise Site 702). During the late Paleocene, similar benthic foraminiferal delta18O values were recorded at all four sites. This indicates uniform deepwater temperatures, consistent with a single source of deep water. The highest delta13C values were recorded in the Southern Ocean and were 0.5 per mil more positive than those of the Pacific. We infer that the Southern Ocean was proximal to a source of nutrient-depleted deep water during the late Paleocene. Upper Paleocene Reflector Ab was cut on the western Bermuda Rise by cyclonically circulating bottom water, also suggesting a vigorous source of bottom water in the Southern Ocean. A dramatic negative excursion in both carbon and oxygen isotopes occurred in the latest Paleocene in the Southern Ocean. This is a short-term (<100 kyr), globally synchronous event which also is apparent in both the Atlantic and Pacific records as a carbon isotopic excursion of approximately 1 per mil. Faunal analyses from the North Atlantic and Pacific sites indicate that the largest benthic foraminiferal faunal turnover of the Cenozoic was synchronous with the isotopic excursion, lending support to the hypothesis that the extinctions were caused by a change in deepwater circulation. We speculate that the Southern Ocean deepwater source was reduced or eliminated at the time of the excursion. During the early Eocene, Southern Ocean delta13C values remained enriched relative to the North Atlantic and Pacific. However, the Southern Ocean was also enriched in delta18O relative to these basins. We interpret that these patterns indicate that although the Southern Ocean was proximal to a source of cool, nutrient-depleted water, the intermediate to upper deep water sites of the North Atlantic and Pacific were ventilated by a different source that probably originated in low latitudes, i.e., WSDW.
Resumo:
Benthic (Uvigerina spp., Cibicidoides spp., Gyroidinoides spp.) and planktonic (N. pachyderma sinistral, G. bulloides) stable isotope records from three core sites in the central Gulf of Alaska are used to infer mixed-layer and deepwater properties of the late glacial Subarctic Pacific. Glacial-interglacial amplitudes of the planktonic delta18O records are 1.1-1.3 per mil, less than half the amplitude observed at core sites at similar latitudes in the North Atlantic; these data imply that a strong, negative deltaw anomaly existed in the glacial Subarctic mixed layer during the summer, which points to a much stronger low-salinity anomaly than exists today. If true, the upper water column in the North Pacific would have been statically more stable than today, thus suppressing convection even more efficiently. This scenario is further supported by vertical (i.e., planktic versus benthic) delta18O and delta13C gradients of >1 per mil, which suggest that a thermohaline link between Pacific deep waters and the Subarctic Pacific mixed layer did not exist during the late glacial. Epibenthic delta13C in the Subarctic Pacific is more negative than at tropical-subtropical Pacific sites but similar to that recorded at Southern Ocean sites, suggesting ventilation of the deep central Pacific from mid-latitude sources, e.g., from the Sea of Japan and Sea of Okhotsk. Still, convection to intermediate depths could have occurred in the Subarctic during the winter months when heat loss to the atmosphere, sea ice formation, and wind-driven upwelling of saline deep waters would have been most intense. This would be beyond the grasp of our planktonic records which only document mixed-layer temperature-salinity fields extant during the warmer seasons. Also we do not have benthic isotope records from true intermediate water depths of the Subarctic Pacific.
Resumo:
We studied the stable isotopic and carbonate stratigraphy of ODP Hole 704A to reconstruct the paleoceanographic evolution of the eastern subantarctic sector of the South Atlantic Ocean. Site 704 is well positioned with respect to latitude (46°52.8'S, 7°25.3'E) and bathymetry (2532 m) to monitor past migrations in the position of Polar Front Zone (PFZ) and changes in deep-water circulation during the late Pliocene-Pleistocene. Several important changes occurred in proxy paleoceanographic indicators across the Gauss/Matuyama boundary at 2.47 Ma: (1) accumulation rates of biogenic sedimentary components increased by an order of magnitude (Froelich et al., this volume); (2) planktonic d1 8O values increased by an average of 0.5 per mil; (3) the amplitude of the benthic d18O signal increased; (4) the accumulation rate of ice-rafted detritus increased several fold (Warnke and Allen, this volume); and (5) carbon isotopic ratios of benthic foraminifers decreased by 0.5 per mil, as did the d13C of the fine-fraction carbonate by 1.5 per mil (Mead et al., 1991, doi:10.2973/odp.proc.sr.114.152.1991), but no change occurred in planktonic foraminiferal d13C values. Most of these changes are consistent with more frequent expansions and contractions of the PFZ over Site 704 after 2.47 Ma, bringing cold, nutrient-rich waters to 47°S that stimulated both carbonate and siliceous productivity. The synchronous increase in d18O values and ice-rafted detritus accumulation in Hole 704A indicates that the 2.4 Ma paleoceanographic event included ice volume growth on both Antarctica and Northern Hemisphere continents. The decrease in benthic d13C values indicates that the ventilation rate of Southern Ocean deep water decreased and the nutrient content increased during glacial events after 2.5 Ma. At the Gauss/Matuyama boundary, benthic d13C values of the Southern Ocean shifted toward those of the Pacific end member, indicating a decrease in the relative mixing ratio of Northern Component Water and Circumpolar Deep Water. During the early Matuyama (~2.3 to 1.7 Ma), the PFZ generally occupied a southerly position with respect to Site 704 and carbonate productivity prevailed. Exceptions to these general conditions occurred during strong glacial events of the early Matuyama (e.g., isotopic stages 82, 78, 74, and 70), when the PFZ migrated to the north and opal sedimentation predominated at Site 704. At 1.7 Ma, the PFZ migrated toward the equator and occupied a more northerly position for a prolonged interval between ~1.7 and 1.5 Ma. Beginning at ~1.5-1.4 Ma, surface and bottom water parameters (d18O, d13C, %CaCO3, and %opal) in the subantarctic South Atlantic became highly correlated such that glacial events (d18O maxima) corresponded to d13C and carbonate minima and opal maxima. This pattern is typical of the correlation found during the latest Pleistocene in the Southern Ocean (Charles and Fairbanks, in press). This event coincided with increased suppression of Northern Component Water during glacial events after 1.5 Ma (Raymo et al., 1990, doi:10.1016/0012-821X(90)90051-X), which may have influenced the climatology of the Southern Hemisphere by altering the flux of heat and salt to the Southern Ocean).
Resumo:
The conversion of surface water to deep water in the North Atlantic results in the release of heat from the ocean to the atmosphere, which may have amplified millennial-scale climate variability during glacial times (Broecker et al., 1990, doi:10.1029/PA005i004p00469) and could even have contributed to the past 11,700 years of relatively mild climate (known as the Holocene epoch) (Bond et al., 2001, doi:10.1126/science.1065680; Alley et al., 1997, doi:10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2; Keigwin and Boyle, 2000, doi:10.1073/pnas.97.4.1343). Here we investigate changes in the carbon-isotope composition of benthic foraminifera throughout the Holocene and find that deep-water production varied on a centennial-millennial timescale. These variations may be linked to surface and atmospheric events that hint at a contribution to climate change over this period.
Resumo:
The central problem of late Quaternary circulation in the South Atlantic is its role in transfer of heat to the North Atlantic, as this modifies amplitude, and perhaps phase, of glacialinterglacial fluctuations. Here we attempt to define the problem and establish ways to attack it. We identify several crucial elements in the dynamics of heat export: (1) warm-water pile-up (and lack thereof) in the Western equatorial Atlantic, (2) general spin-up (or spin-down) of central gyre, tied to SE trades, (3) opening and closing of Cape Valve (Agulhas retroflection), (4) deepwater E-W asymmetry. Means for reconstruction are biogeography, stable isotopes, and productivity proxies. Main results concern overall glacial-interglacial contrast (less pile-up, more spin-up, Cape Valve closed, less NADW during glacial time), dominance of precessional signal in tropics, phase shifts in precessional response. To generate working hypotheses about the dynamics of surface water circulation in the South Atlantic we employ Croll's paradigm that glacial - interglacial fluctuations are analogous to seasonal fluctuations. Our general picture for the last 300 kyrs is that, as concerns the South Atlantic, intensity of surface water (heat) transport depends on the strength of the SE trades. From various lines of evidence it appears that strenger SE trades appeared during glacials and cold substages during interglacials, analogous to conditions in southern winter (August).
Resumo:
The Denmark Strait Overflow (DSO) today compensates for the northward flowing Norwegian and Irminger branches of the North Atlantic Current that drive the Nordic heat pump. During the Last Glacial Maximum (LGM), ice sheets constricted the Denmark Strait aperture in addition to ice eustatic/isostatic effects which reduced its depth (today ~630 m) by ~130 m. These factors, combined with a reduced north-south density gradient of the water-masses, are expected to have restricted or even reversed the LGM DSO intensity. To better constrain these boundary conditions, we present a first reconstruction of the glacial DSO, using four new and four published epibenthic and planktic stable-isotope records from sites to the north and south of the Denmark Strait. The spatial and temporal distribution of epibenthic delta18O and delta13C maxima reveals a north-south density gradient at intermediate water depths from sigma0 ~28.7 to 28.4/28.1 and suggests that dense and highly ventilated water was convected in the Nordic Seas during the LGM. However, extremely high epibenthic delta13C values on top of the Mid-Atlantic Ridge document a further convection cell of Glacial North Atlantic Intermediate Water to the south of Iceland, which, however, was marked by much lower density (sigma0 ~28.1). The north-south gradient of water density possibly implied that the glacial DSO was directed to the south like today and fed Glacial North Atlantic Deep Water that has underthrusted the Glacial North Atlantic Intermediate Water in the Irminger Basin.
Resumo:
Hydrographical changes of the southern Indian Ocean over the last 230 kyr, is reconstructed using a 17-m-long sediment core (MD 88 770; 46°01'S 96°28'E, 3290m). The oxygen and carbon isotopic composition of planktonic (N. pachyderma sinistra and G. bulloides) and benthic (Cibicidoides wuellerstorfi, Epistominella exigua, and Melonis barleeanum) foraminifera have been analysed. Changes in sea surface temperatures (SST) are calculated using diatom and foraminiferal transfer functions. A new core top calibration for the Southern Ocean allows an extension of the method developed in the North Atlantic to estimate paleosalinities (Duplessy et al., 1991). The age scale is built using accelerator mass spectrometry (AMS) 14C dating of N. pachyderma s. for the last 35 kyr, and an astronomical age scale beyond. Changes in surface temperature and salinity clearly lead (by 3 to 7 kyr) deep water variations. Thus changes in deep water circulation are not the cause of the early response of the surface Southern Ocean to climatic changes. We suggest that the early warming and cooling of the Southern Ocean result from at least two processes acting in different orbital bands and latitudes: (1) seasonality modulated by obliquity affects the high-latitude ocean surface albedo (sea ice coverage) and heat transfer to and from the atmosphere; (2) low-latitude insolation modulated by precession influences directly the atmosphere dynamic and related precipitation/ evaporation changes, which may significantly change heat transfer to the high southern latitudes, through their control on latitudinal distribution of the major frontal zones and on the conditions of intermediate and deep water formation.