544 resultados para Gustafsson, Kristian
Resumo:
9 x 12 cm
Resumo:
7 x 12 cm
Resumo:
7 x 11 cm
Resumo:
8 x 12 cm
Resumo:
8 x 11 cm
Resumo:
8 x 11 cm
Resumo:
9 x 12 cm
Resumo:
Konserteissa esiintyvät pianistit: Sanni Antikainen, Jarmo Eerikäinen, Laura Iacovache-Pana, Elisa Järvi, Tiina Karakorpi, Annikka Konttori-Gustafsson, Matilda Kärkkäinen, Juhani Lagerspetz, Maria Männikkö, Eduardo Palomares, Anna Ramstedt, Ilmo Ranta, Johan von Schantz, Erik T. Tawaststjerna, Hui-Ying Tawaststjerna, Emma Teronen, Stefanie Tuurna, Anu Vehviläinen.
Resumo:
The biological variation in nature is called biodiversity. Anthropogenic pressures have led to a loss of biodiversity, alarming scientists as to what consequences declining diversity has for ecosystem functioning. The general consensus is that diversity (e.g. species richness or identity) affects functioning and provides services from which humans benefit. The aim of this thesis was to investigate how aquatic plant species richness and identity affect ecosystem functioning in terms of processes such as primary production, nutrient availability, epifaunal colonization and properties e.g. stability of Zostera marina subjected to shading. The main work was carried out in the field and ranged temporally from weeklong to 3.5 months-long experiments. The experimental plants used frequently co-occur in submerged meadows in the northern Baltic Sea and consist of eelgrass (Z. marina), perfoliate pondweed (Potamogeton perfoliatus), sago pondweed (P. pectinatus), slender-leaved pondweed (P. filiformis) and horned pondweed (Zannichellia palustris). The results showed that plant richness affected epifaunal community variables weakly, but had a strong positive effect on infaunal species number and functional diversity, while plant identity had strong effects on amphipods (Gammarus spp.), of which abundances were higher in plant assemblages consisting of P. perfoliatus. Depending on the starting standardizing unit, plant richness showed varying effects on primary production. In shoot density-standardized plots, plant richness increased the shoot densities of three out of four species and enhanced the plant biomass production. Both positive complementarity and selection effects were found to underpin the positive biodiversity effects. In shoot biomass-standardized plots, richness effects only affected biomass production of one species. Negative selection was prevalent, counteracting positive complementarity, which resulted in no significant biodiversity effect. The stability of Z. marina was affected by plant richness in such that Z. marina growing in polycultures lost proportionally less biomass than Z. marina in monocultures and thus had a higher resistance to shading. Monoculture plants in turn gained biomass faster, and thereby had a faster recovery than Z. marina growing in polycultures. These results indicate that positive interspecific interactions occurred during shading, while the faster recovery of monocultures suggests that the change from shading stress to recovery resulted in a shift from positive interactions to resource competition between species. The results derived from this thesis show that plant diversity affects ecosystem functioning and contribute to the growing knowledge of plant diversity being an important component of aquatic ecosystems. Diverse plant communities sustain higher primary productivity than comparable monocultures, affect faunal communities positively and enhance stability. Richness and identity effects vary, and identity has generally stronger effects on more variables than richness. However, species-rich communities are likely to contain several species with differing effects on functions, which renders species richness important for functioning. Mixed meadows add to coastal ecosystem functioning in the northern Baltic Sea and may provide with services essential for human well-being.
Resumo:
Five male 6-8 month-old Murrah buffalo calves were orally dosed with the fresh aerial parts of Baccharis megapotamica var. weirii at doses of 1, 3, 4, 5 and 10g/kg body weight (bw) (~1-10mg macrocyclic trichothecenes/kg/bw). The B. megapotamica used for the experiment was harvested on a farm where a recent spontaneous outbreak of poisoning caused by such plant had occurred. Clinical signs appeared 4-20 hours and 4 buffaloes died 18-49 hours after the ingestion of the plant. Clinical signs were apathy, anorexia, and watery diarrhea, fever, colic, drooling, muscle tremors, restlessness, laborious breathing and ruminal atony, and dehydration. The most consistent gross findings were restricted to the gastrointestinal (GI) tract consisted of varying degrees of edema and reddening of the mucosa of the forestomach. Histopathological findings consisted of varying degrees of necrosis of the epithelial lining of the forestomach and of lymphocytes within lymphoid organs and aggregates. Fibrin thrombi were consistently found in sub-mucosal vessels of the forestomach and in the lumen of hepatic sinusoids. It is suggested that dehydration, septicemia and disseminated intravascular coagulation participate in the pathogenesis of the intoxication and play a role as a cause of death. A subsample of B. megapotamica var. weirii was frozen-dried and ground and analyzed using UHPLC (Ultra High Performance Liquid Chromatography) with high resolution Time of Flight mass spectrometry and tandem mass spectrometry, it was shown that the plant material contained at least 51 different macrocyclic trichothecenes at a total level of 1.1-1.2mg/g. About 15-20% of the total trichothecenes contents was found to be monosaccharide conjugates, with two thirds of these being glucose conjugates and one third constituted by six aldopentose conjugates (probably xylose), which has never been reported in the literature.