940 resultados para Guinea pig atrium
Resumo:
The excavations of Chiribaya culture sites in the Osmore drainage of southern Peru focused on the recovery of information about prehistoric disease, including parasitism. The archaeologists excavated human, dog, guinea pig, and llama mummies. These mummies were analyzed for internal and external parasites. The results of the analysis and reconstruction of prehistoric life from the excavations allows us to interpret the pathoecology of the Chiribaya culture.
Resumo:
Hearing loss in Meniere's disease (MD) is associated with loss of spiral ganglion neurons and hair cells. In a guinea pig model of endolymphatic hydrops, nitric oxide synthases (NOS) and oxidative stress mediate loss of spiral ganglion neurons. To test the hypothesis that functional variants of NOS1 and NOS2A are associated with MD, wed genotyped three functional variants of NOS1 (rs41279104,rs2682826, and a cytosine-adenosine microsatellite repeat in exon 1f) and the CCTTT repeat in the promoter of NOS2A gene (rs3833912) in two independent MD sets(273 patients in total) and 550 controls. A third cohort of American patients was genotyped as replication cohort for the CCTTT repeat. Neither allele nor genotype frequencies of rs41279104 and rs2682826 were associated with MD, although longer alleles of the cytosine-adenosine microsatellite repeat were marginally significant (corrected p = 0.05) in the Mediterranean cohort but not in a second Galicia cohort. Shorter numbers of the CCTTT repeat in NOS2A were significantly more frequent in Galicia controls (OR = 0.37 [CI, 0.18-0.76], corrected p =0.04), but this finding could not be replicated in Mediterranean or American case-control populations. Meta-analysis did not support an association between CCTTT repeats and risk for MD. Severe hearing loss (>75 dB) was also not associated with any functional variants studied. Functional variants of NOS1 and and NOS2A do not confer susceptibility for MD.
Resumo:
We investigated the activity of linezolid, alone and in combination with rifampin (rifampicin), against a methicillin-resistant Staphylococcus aureus (MRSA) strain in vitro and in a guinea pig model of foreign-body infection. The MIC, minimal bactericidal concentration (MBC) in logarithmic phase, and MBC in stationary growth phase were 2.5, >20, and >20 microg/ml, respectively, for linezolid; 0.01, 0.08, and 2.5 microg/ml, respectively, for rifampin; and 0.16, 0.63, >20 microg/ml, respectively, for levofloxacin. In time-kill studies, bacterial regrowth and the development of rifampin resistance were observed after 24 h with rifampin alone at 1x or 4x the MIC and were prevented by the addition of linezolid. After the administration of single intraperitoneal doses of 25, 50, and 75 mg/kg of body weight, linezolid peak concentrations of 6.8, 12.7, and 18.1 microg/ml, respectively, were achieved in sterile cage fluid at approximately 3 h. The linezolid concentration remained above the MIC of the test organism for 12 h with all doses. Antimicrobial treatments of animals with cage implant infections were given twice daily for 4 days. Linezolid alone at 25, 50, and 75 mg/kg reduced the planktonic bacteria in cage fluid during treatment by 1.2 to 1.7 log(10) CFU/ml; only linezolid at 75 mg/kg prevented bacterial regrowth 5 days after the end of treatment. Linezolid used in combination with rifampin (12.5 mg/kg) was more effective than linezolid used as monotherapy, reducing the planktonic bacteria by >or=3 log(10) CFU (P < 0.05). Efficacy in the eradication of cage-associated infection was achieved only when linezolid was combined with rifampin, with cure rates being between 50% and 60%, whereas the levofloxacin-rifampin combination demonstrated the highest cure rate (91%) against the strain tested. The linezolid-rifampin combination is a treatment option for implant-associated infections caused by quinolone-resistant MRSA.
Resumo:
In the present paper, we announce new draft genomes of four Leptospira interrogans strains named Acegua, RCA, Prea, and Capivara. These strains were isolated in the state of Rio Grande do Sul, Brazil, from cattle, dog, Brazilian guinea pig, and capybara, respectively.
Resumo:
Dermatophytes cause the majority of superficial mycoses in humans and animals. However, little is known about the pathogenicity of this specialized group of filamentous fungi, for which molecular research has been limited thus far. During experimental infection of guinea pigs by the human pathogenic dermatophyte Arthroderma benhamiae, we recently detected the activation of the fungal gene encoding malate synthase AcuE, a key enzyme of the glyoxylate cycle. By the establishment of the first genetic system for A. benhamiae, specific ΔacuE mutants were constructed in a wild-type strain and, in addition, in a derivative in which we inactivated the nonhomologous end-joining pathway by deletion of the A. benhamiae KU70 gene. The absence of AbenKU70 resulted in an increased frequency of the targeted insertion of linear DNA by homologous recombination, without notably altering the monitored in vitro growth abilities of the fungus or its virulence in a guinea pig infection model. Phenotypic analyses of ΔacuE mutants and complemented strains depicted that malate synthase is required for the growth of A. benhamiae on lipids, major constituents of the skin. However, mutant analysis did not reveal a pathogenic role of the A. benhamiae enzyme in guinea pig dermatophytosis or during epidermal invasion of the fungus in an in vitro model of reconstituted human epidermis. The presented efficient system for targeted genetic manipulation in A. benhamiae, paired with the analyzed infection models, will advance the functional characterization of putative virulence determinants in medically important dermatophytes.
Resumo:
For enterococcal implant-associated infections, the optimal treatment regimen has not been defined. We investigated the activity of daptomycin, vancomycin, and gentamicin (and their combinations) against Enterococcus faecalis in vitro and in a foreign-body infection model. Antimicrobial activity was investigated by time-kill and growth-related heat production studies (microcalorimetry) as well as with a guinea pig model using subcutaneously implanted cages. Infection was established by percutaneous injection of E. faecalis in the cage. Antibiotic treatment for 4 days was started 3 h after infection. Cages were removed 5 days after end of treatment to determine the cure rate. The MIC, the minimal bactericidal concentration (MBC) in the logarithmic phase, and the MBC in the stationary phase were 1.25, 5, and >20 μg/ml for daptomycin, 1, >64, and >64 μg/ml for vancomycin, and 16, 32, and 4 μg/ml for gentamicin, respectively. In vitro, gentamicin at subinhibitory concentrations improved the activity against E. faecalis when combined with daptomycin or vancomycin in the logarithmic and stationary phases. In the animal model, daptomycin cured 25%, vancomycin 17%, and gentamicin 50% of infected cages. In combination with gentamicin, the cure rate for daptomycin increased to 55% and that of vancomycin increased to 33%. In conclusion, daptomycin was more active than vancomycin against adherent E. faecalis, and its activity was further improved by the addition of gentamicin. Despite a short duration of infection (3 h), the cure rates did not exceed 55%, highlighting the difficulty of eradicating E. faecalis from implants already in the early stage of implant-associated infection.
Resumo:
Differences in physico-chemical characteristics of bone grafts to fill bone defects have been demonstrated to influence in vitro bacterial biofilm formation. Aim of the study was to investigate in vivo staphylococcal biofilm formation on different calcium phosphate bone substitutes. A foreign-body guinea-pig infection model was used. Teflon cages prefilled with β-tricalcium phosphate, calcium-deficient hydroxyapatite, or dicalcium phosphate (DCP) scaffold were implanted subcutaneously. Scaffolds were infected with 2 × 10(3) colony-forming unit of Staphylococcus aureus (two strains) or S. epidermidis and explanted after 3, 24 or 72 h of biofilm formation. Quantitative and qualitative biofilm analysis was performed by sonication followed by viable counts, and microcalorimetry, respectively. Independently of the material, S. aureus formed increasing amounts of biofilm on the surface of all scaffolds over time as determined by both methods. For S. epidermidis, the biofilm amount decreased over time, and no biofilm was detected by microcalorimetry on the DCP scaffolds after 72 h of infection. However, when using a higher S. epidermidis inoculum, increasing amounts of biofilm were formed on all scaffolds as determined by microcalorimetry. No significant variation in staphylococcal in vivo biofilm formation was observed between the different materials tested. This study highlights the importance of in vivo studies, in addition to in vitro studies, when investigating biofilm formation of bone grafts.
Resumo:
Limited treatment options are available for implant-associated infections caused by methicillin (meticillin)-resistant Staphylococcus aureus (MRSA). We compared the activity of daptomycin (alone and with rifampin [rifampicin]) with the activities of other antimicrobial regimens against MRSA ATCC 43300 in the guinea pig foreign-body infection model. The daptomycin MIC and the minimum bactericidal concentration in logarithmic phase and stationary growth phase of MRSA were 0.625, 0.625, and 20 microg/ml, respectively. In time-kill studies, daptomycin showed rapid and concentration-dependent killing of MRSA in stationary growth phase. At concentrations above 20 microg/ml, daptomycin reduced the counts by >3 log(10) CFU/ml in 2 to 4 h. In sterile cage fluid, daptomycin peak concentrations of 23.1, 46.3, and 53.7 microg/ml were reached 4 to 6 h after the administration of single intraperitoneal doses of 20, 30, and 40 mg/kg of body weight, respectively. In treatment studies, daptomycin alone reduced the planktonic MRSA counts by 0.3 log(10) CFU/ml, whereas in combination with rifampin, a reduction in the counts of >6 log(10) CFU/ml was observed. Vancomycin and daptomycin (at both doses) were unable to cure any cage-associated infection when they were given as monotherapy, whereas rifampin alone cured the infections in 33% of the cages. In combination with rifampin, daptomycin showed cure rates of 25% (at 20 mg/kg) and 67% (at 30 mg/kg), vancomycin showed a cure rate of 8%, linezolid showed a cure rate of 0%, and levofloxacin showed a cure rate of 58%. In addition, daptomycin at a high dose (30 mg/kg) completely prevented the emergence of rifampin resistance in planktonic and adherent MRSA cells. Daptomycin at a high dose, corresponding to 6 mg/kg in humans, in combination with rifampin showed the highest activity against planktonic and adherent MRSA. Daptomycin plus rifampin is a promising treatment option for implant-associated MRSA infections.
Resumo:
Alpha-D-mannopyranosides are potent FimH antagonists, which inhibit the adhesion of Escherichia coli to highly mannosylated uroplakin Ia on the urothelium and therefore offer an efficient therapeutic opportunity for the treatment and prevention of urinary tract infection. For the evaluation of the therapeutic potential of FimH antagonists, their effect on the disaggregation of E. coli from Candida albicans and guinea pig erythrocytes (GPE) was studied. The mannose-specific binding of E. coli to yeast cells and erythrocytes is mediated by type 1 pili and can be monitored by aggregometry. Maximal aggregation of C. albicans or GPE to E. coli is reached after 600 s. Then the FimH antagonist was added and disaggregation determined by light transmission over a period of 1400 s. A FimH-deleted mutant of E. coli, which does not induce any aggregation, was used in a control experiment. The activities of FimH antagonists are expressed as IC(50)s, the half maximal inhibitory concentration of the disaggregation potential. n-Heptyl alpha-D-mannopyranoside (1) was used as a reference compound and exhibits an IC(50) of 77.14 microM , whereas methyl alpha-D-mannopyranoside (2) does not lead to any disaggregation at concentrations up to 800 microM. o-Chloro-p-[N-(2-ethoxy-3,4-dioxocyclobut-1-enyl)amino]phenyl alpha-D-mannopyranoside (3) shows a 90-fold and 2-chloro-4-nitrophenyl alpha-D-mannopyranoside (4) a 6-fold increased affinity compared to 1. Finally, 4-nitrophenyl alpha-D-mannopyranoside (5) exhibits an activity similar to 1. As negative control, D-galactose (6) was used. The standardized aggregation assay generates concentration-dependent, reproducible data allowing the evaluation of FimH antagonists according to their potency to inhibit E. coli adherence and can therefore be employed to select candidates for experimental and clinical studies for treatment and prevention of urinary tract infections.
Resumo:
PURPOSE: Abdominal aortic aneurysms (AAAs) expand because of aortic wall destruction. Enrichment in Vascular Smooth Muscle Cells (VSMCs) stabilizes expanding AAAs in rats. Mesenchymal Stem Cells (MSCs) can differentiate into VSMCs. We have tested the hypothesis that bone marrow-derived MSCs (BM-MSCs) stabilizes AAAs in a rat model. MATERIAL AND METHODS: Rat Fischer 344 BM-MSCs were isolated by plastic adhesion and seeded endovascularly in experimental AAAs using xenograft obtained from guinea pig. Culture medium without cells was used as control group. The main criteria was the variation of the aortic diameter at one week and four weeks. We evaluated the impact of cells seeding on inflammatory response by immunohistochemistry combined with RT-PCR on MMP9 and TIMP1 at one week. We evaluated the healing process by immunohistochemistry at 4 weeks. RESULTS: The endovascular seeding of BM-MSCs decreased AAA diameter expansion more powerfully than VSMCs or culture medium infusion (6.5% ± 9.7, 25.5% ± 17.2 and 53.4% ± 14.4; p = .007, respectively). This result was sustained at 4 weeks. BM-MSCs decreased expression of MMP-9 and infiltration by macrophages (4.7 ± 2.3 vs. 14.6 ± 6.4 mm(2) respectively; p = .015), increased Tissue Inhibitor Metallo Proteinase-1 (TIMP-1), compared to culture medium infusion. BM-MSCs induced formation of a neo-aortic tissue rich in SM-alpha active positive cells (22.2 ± 2.7 vs. 115.6 ± 30.4 cells/surface units, p = .007) surrounded by a dense collagen and elastin network covered by luminal endothelial cells. CONCLUSIONS: We have shown in this rat model of AAA that BM-MSCs exert a specialized function in arterial regeneration that transcends that of mature mesenchymal cells. Our observation identifies a population of cells easy to isolate and to expand for therapeutic interventions based on catheter-driven cell therapy.
Resumo:
Although dermatophytes are the most common agents of superficial mycoses in humans and animals, the molecular basis of the pathogenicity of these fungi is largely unknown. In vitro digestion of keratin by dermatophytes is associated with the secretion of multiple proteases, which are assumed to be responsible for their particular specialization to colonize and degrade keratinized host structures during infection. To investigate the role of individual secreted proteases in dermatophytosis, a guinea pig infection model was established for the zoophilic dermatophyte Arthroderma benhamiae, which causes highly inflammatory cutaneous infections in humans and rodents. By use of a cDNA microarray covering approximately 20-25 % of the A. benhamiae genome and containing sequences of at least 23 protease genes, we revealed a distinct in vivo protease gene expression profile in the fungal cells, which was surprisingly different from the pattern elicited during in vitro growth on keratin. Instead of the major in vitro -expressed proteases, others were activated specifically during infection. These enzymes are therefore suggested to fulfil important functions that are not exclusively associated with the degradation of keratin. Most notably, the gene encoding the serine protease subtilisin 6, which is a known major allergen in the related dermatophyte Trichophyton rubrum and putatively linked to host inflammation, was found to be the most strongly upregulated gene during infection. In addition, our approach identified other candidate pathogenicity-related factors in A. benhamiae, such as genes encoding key enzymes of the glyoxylate cycle and an opsin-related protein. Our work provides what we believe to be the first broad-scale gene expression profile in human pathogenic dermatophytes during infection, and points to putative virulence-associated mechanisms that make these micro-organisms the most successful aetiological agents of superficial mycoses.
Resumo:
Hearing loss can be caused by a variety of insults, including acoustic trauma and exposure to ototoxins, that principally effect the viability of sensory hair cells via the MAP kinase (MAPK) cell death signaling pathway that incorporates c-Jun N-terminal kinase (JNK). We evaluated the otoprotective efficacy of D-JNKI-1, a cell permeable peptide that blocks the MAPK-JNK signal pathway. The experimental studies included organ cultures of neonatal mouse cochlea exposed to an ototoxic drug and cochleae of adult guinea pigs that were exposed to either an ototoxic drug or acoustic trauma. Results obtained from the organ of Corti explants demonstrated that the MAPK-JNK signal pathway is associated with injury and that blocking of this signal pathway prevented apoptosis in areas of aminoglycoside damage. Treatment of the neomycin-exposed organ of Corti explants with D-JNKI-1 completely prevented hair cell death initiated by this ototoxin. Results from in vivo studies showed that direct application of D-JNKI-1 into the scala tympani of the guinea pig cochlea prevented nearly all hair cell death and permanent hearing loss induced by neomycin ototoxicity. Local delivery of D-JNKI-1 also prevented acoustic trauma-induced permanent hearing loss in a dose-dependent manner. These results indicate that the MAPK-JNK signal pathway is involved in both ototoxicity and acoustic trauma-induced hair cell loss and permanent hearing loss. Blocking this signal pathway with D-JNKI-1 is of potential therapeutic value for long-term protection of both the morphological integrity and physiological function of the organ of Corti during times of oxidative stress.
Resumo:
Abstract: Paca (Cuniculus paca), one of the largest rodents of the Brazilian fauna, has inherent characteristics of its species which can conribute as a new option for animal experimantation. As there is a growing demand for suitable experimental models in audiologic and otologic surgical research, the gross anatomy and ultrastructural ear of this rodent have been analyzed and described in detail. Fifteen adult pacas from the Wild Animals Sector herd of Faculdade de Ciências Agrárias e Veterinárias, Unesp-Jaboticabal, were used in this study. After anesthesia and euthanasia, we evaluated the entire composition of the external ear, registering and ddescribing the details; the temporal region was often dissected for a better view and detailing of the tympanic bulla which was removed and opened to expose the ear structures analyzed mascroscopically and ultrastructurally. The ear pinna has a triangular and concave shape with irregular ridges and sharp apex. The external auditory canal is winding in its path to the tympanic mebrane. The tympanic bulla is is on the back-bottom of the skull. The middle ear is formed by a cavity region filled with bone and membranous structures bounded by the tympanic membrane and the oval and round windows. The tympanic membrane is flat and seals the ear canal. The anatomy of the paca ear is similar to the guinea pig and from the viewpoint of experimental model has major advantages compared with the mouse ear.
Resumo:
We have previously discovered a long-lasting enhancement of synaptic transmission in mammal autonomic ganglia caused by immunological activation of ganglionic mast cells. Subsequent to mast cell activation, lipid and peptide mediators are released which may modulate synaptic function. In this study we determined whether some mast cell-derived mediators, prostaglandin D2 (PGD2; 1.0 µM), platelet aggregating factor (PAF; 0.3 µM) and U44619 (a thromboxane analogue; 1.0 µM), and also endothelin-1 (ET-1; 0.5 µM) induce synaptic potentiation in the guinea pig superior cervical ganglion (SCG), and compared their effects on synaptic transmission with those induced by a sensitizing antigen, ovalbumin (OVA; 10 µg/ml). The experiments were carried out on SCGs isolated from adult male guinea pigs (200-250 g) actively sensitized to OVA, maintained in oxygenated Locke solution at 37oC. Synaptic potentiation was measured through alterations of the integral of the post-ganglionic compound action potential (CAP). All agents tested caused long-term (LTP; duration ³30 min) or short-term (STP; <30 min) potentiation of synaptic efficacy, as measured by the increase in the integral of the post-ganglionic CAP. The magnitude of mediator-induced potentiation was never the same as the antigen-induced long-term potentiation (A-LTP). The agent that best mimicked the antigen was PGD2, which induced a 75% increase in CAP integral for LTP (antigen: 94%) and a 34% increase for STP (antigen: 91%). PAF-, U44619-, and ET-1-induced increases in CAP integral ranged for LTP from 34 to 47%, and for STP from 0 to 26%. These results suggest that the agents investigated may participate in the induction of A-LTP
Resumo:
Ipomoea imperati (Convolvulaceae) lives on the sandy shores of the Brazilian coast and in other areas of the world. The anti-inflammatory activity of a methanol-water extract of the leaves of I. imperati was investigated in experimental models of acute and subchronic inflammation. Topical application of the extract (10 mg/ear) inhibited mouse ear edema induced by croton oil (89.0 ± 1.3% by the lipid fraction with an IC50 of 3.97 mg/ear and 57.0 ± 1.3% by the aqueous fraction with an IC50 of 3.5 mg/ear) and arachidonic acid (42.0 ± 2.0% with an IC50 of 4.98 mg/ear and 31.0 ± 2.0% with an IC50 of 4.72 mg/ear). Phospholipase A2, purified from Apis mellifera bee venom, was also inhibited by the extract (5.0 mg/ml lipid and aqueous fraction) in vitro in a dose-dependent manner (85% by the lipid fraction with an IC50 of 3.22 mg/ml and 25% by the aqueous fraction with an IC50 of 3.43 mg/ml). The methanol-water extract of I. imperati (1000 mg/kg) administered by the oral route also inhibited the formation of cotton pellet-induced granulomas (73.2 ± 1.2% by the lipid fraction and 56.14 ± 2.7% by the aqueous fraction) and did not cause gastric mucosal lesions. I. imperati extracts (10 mg/ml) also inhibited in a dose-dependent manner the muscle contractions of guinea pig ileum induced by acetylcholine and histamine (IC50 of 1.60 mg/ml for the lipid fraction and 4.12 mg/ml for the aqueous fraction). These results suggest the use of I. imperati as an anti-inflammatory and antispasmodic agent in traditional medicine.