963 resultados para Guest-host systems
Resumo:
We have collected initial evidence that tidal interaction between a late-type star and its close-in, massive planet can lead to a spin-up of the host star. We propose to explore this further by studying a small sample of proper motion pairs in which one of the stars is orbited by a Hot Jupiter. We will determine if the activity-estimated age appears to be strongly different for the two stars, which would indicate a tidal spin up of the Hot Jupiter host star. We propose to observe 4 such systems with Chandra/ACIS-S, and to perform a similar observation of one additional system with large angular separation using XMM-Newton/EPIC. The total proposed exposure times are 141 ks (Chandra) and 38 ks (XMM).
Resumo:
We have collected initial evidence that tidal interaction between a late-type star and its close-in, massive planet can lead to a spin-up of the host star. We propose to explore this further by studying a small sample of proper motion pairs in which one of the stars is orbited a Hot Jupiter. We will determine if the gyrochronal age is different for the two stars, which would indicate a tidal spin up of the planet host star. We propose to observe 3 such systems with XMM, and to perform similar Chandra observations of 3 more systems with angular separations
Resumo:
When a planet transits its host star, it blocks regions of the stellar surface from view; this causes a distortion of the spectral lines and a change in the line-of-sight (LOS) velocities, known as the Rossiter-McLaughlin (RM) effect. Since the LOS velocities depend, in part, on the stellar rotation, the RM waveform is sensitive to the star-planet alignment (which provides information on the system’s dynamical history). We present a new RM modelling technique that directly measures the spatially-resolved stellar spectrum behind the planet. This is done by scaling the continuum flux of the (HARPS) spectra by the transit light curve, and then subtracting the infrom the out-of-transit spectra to isolate the starlight behind the planet. This technique does not assume any shape for the intrinsic local profiles. In it, we also allow for differential stellar rotation and centre-to-limb variations in the convective blueshift. We apply this technique to HD 189733 and compare to 3D magnetohydrodynamic (MHD) simulations. We reject rigid body rotation with high confidence (>99% probability), which allows us to determine the occulted stellar latitudes and measure the stellar inclination. In turn, we determine both the sky-projected (λ ≈ −0.4 ± 0.2◦) and true 3D obliquity (ψ ≈ 7+12 −4 ◦ ). We also find good agreement with the MHD simulations, with no significant centre-to-limb variations detectable in the local profiles. Hence, this technique provides a new powerful tool that can probe stellar photospheres, differential rotation, determine 3D obliquities, and remove sky-projection biases in planet migration theories. This technique can be implemented with existing instrumentation, but will become even more powerful with the next generation of high-precision radial velocity spectrographs.
Resumo:
Thesis (Ph.D.)--University of Washington, 2014
Resumo:
Rapid developments in display technologies, digital printing, imaging sensors, image processing and image transmission are providing new possibilities for creating and conveying visual content. In an age in which images and video are ubiquitous and where mobile, satellite, and three-dimensional (3-D) imaging have become ordinary experiences, quantification of the performance of modern imaging systems requires appropriate approaches. At the end of the imaging chain, a human observer must decide whether images and video are of a satisfactory visual quality. Hence the measurement and modeling of perceived image quality is of crucial importance, not only in visual arts and commercial applications but also in scientific and entertainment environments. Advances in our understanding of the human visual system offer new possibilities for creating visually superior imaging systems and promise more accurate modeling of image quality. As a result, there is a profusion of new research on imaging performance and perceived quality.
Resumo:
The infrastructure cloud (IaaS) service model offers improved resource flexibility and availability, where tenants - insulated from the minutiae of hardware maintenance - rent computing resources to deploy and operate complex systems. Large-scale services running on IaaS platforms demonstrate the viability of this model; nevertheless, many organizations operating on sensitive data avoid migrating operations to IaaS platforms due to security concerns. In this paper, we describe a framework for data and operation security in IaaS, consisting of protocols for a trusted launch of virtual machines and domain-based storage protection. We continue with an extensive theoretical analysis with proofs about protocol resistance against attacks in the defined threat model. The protocols allow trust to be established by remotely attesting host platform configuration prior to launching guest virtual machines and ensure confidentiality of data in remote storage, with encryption keys maintained outside of the IaaS domain. Presented experimental results demonstrate the validity and efficiency of the proposed protocols. The framework prototype was implemented on a test bed operating a public electronic health record system, showing that the proposed protocols can be integrated into existing cloud environments.
Resumo:
Involvement of ethylene in the etiology of tomato plants (Lycopersicon esculentum) infected with the root-knot nematode (Meloidogyne incognita) was investigated. Endogenous root concentrations of ethylene were not significantly different in uninfected resistant var. Anahu and susceptible var. Vendor plants. Exposure of resistant plants to high doses of infectious nematode larvae did not affect root ethylene concentrations during the subsequent 30 day period. The possibility that ethylene may be involved in the mechanism of resistance is therefore not supported by these experiments. In no experiments did ethylene concentrations in roots of susceptible plants increase significantly subsequent to ~ incognita infestation. This result is not consistent with the hypothesis in the literature which suggests that increased ethylene production accompanies gall formation. Growth of susceptible tomato plants was affected by ~ incognita infestation such that root weights increased (due to galling), stem heights decreased and top weights increased. The possibility that alterations in stem growth resulted from increased production of 'stress' ethylene is discussed. Growth of resistant plants was unaffected by exposure to high doses of ~ incognita and galls were never detected on the roots of these plants. Root ethane concentrations generally varied in parallel with root ethylene concentrations although ethane concentrations were without exception greater. In 4 of 6 experiments conducted ethane/ethylene ratios increased significantly with time. These results are discussed in the light of published data on the relationship between ethane and ethylene synthesis. The term infested is used throughout this thesis in reference to plants whose root systems had been exposed to nematodes and does not distinguish between the susceptible and resistant response.
Resumo:
The exact mechanistic understanding of various organocatalytic systems in asymmetric reactions such as Henry and aza-Henry transformations is important for developing and designing new synthetic organocatalysts. The focus of this dissertation will be on the use of density functional theory (DFT) for studying the asymmetric aza-Henry reaction. The first part of the thesis is a detailed mechanistic investigation of a poorly understood chiral bis(amidine) (BAM) Brønsted acid catalyzed aza-Henry reaction between nitromethane and N-Boc phenylaldimine. The catalyst, in addition to acting as a Brønsted base, serves to simultaneously activate both the electrophile and the nucleophile through dual H-bonding during C-C bond formation and is thus essential for both reaction rate and selectivity. Analysis of the H-bonding interactions revealed that there was a strong preference for the formation of a homonuclear positive charge-assisted H-bond, which in turn governed the relative orientation of substrate binding. Attracted by this well-defined mechanistic investigation, the other important aspect of my PhD research addressed a detailed theoretical analysis accounting for the observed selectivity in diastereoselective versions of this reaction. A detailed inspection of the stereodetermining C-C bond forming transition states for monoalkylated nitronate addition to a range of electronically different aldimines, revealed that the origins of stereoselectivity were controlled by a delicate balance of different factors such as steric, orbital interactions, and the extent of distortion in the catalyst and substrates. The structural analysis of different substituted transition states established an interesting dependency on matching the shape and size of the catalyst (host molecule) and substrates (guest molecules) upon binding, both being key factors governing selectivity, in essence, offering an analogy to positive cooperative binding effect of catalytic enzymes and substrates in Nature. In addition, both intra-molecular (intra-host) and inter-molecular (host-guest, guest-guest) stabilizing interactions play a key role to the high π-facial selectivity. The application of dispersion-corrected functionals (i.e., ωB97X-D and B3LYP-D3) was essential for accurately modeling these stabilizing interactions, indicating the importance of dispersion effects in enantioselectivity. As a brief prelude to more extensive future studies, the influence of a triflate counterion on both reactivity and selectivity in this reaction was also addressed.
Resumo:
The present work deals with the development of primary cell culture and diploid cell lines from two fishes, such as Poecilia reticulata and Clarias gariepinus. The greatest difficulty experienced was the avoidance of bacterial and fungi contamination. Three types of cell cultures are commonly developed, primary cell culture, diploid cell lines and heteroploid cell lines. Primary cell culture obtained from the animal tissues that have been cultivated in vitro for the first time. They are characterized by the same chromosome number as parent tissue, cultivated in vitro for the first time, have wide range of virus susceptibility, usually not malignant, six chromatin retarded and do not grow as suspension cultures. Diploid cell lines arise from a primary cell culture at the time of subculturing. Diploid cell lines commercially used in virology are W1-38 (human embryonic lung), W1-26 (human embryonic lung) and HEX (Human embryonic kidney). Heteroploid cell lines have been subcultivated with less than 75% of the cells in the population having a diploid chromosome constitution. Tissue cultures have been extensively used in biomedical research. The main applications are in three areas, Karyological studies, Identification and study of hereditary metabolic disorders and Somatic cell genetics. Other applications are in virology and host-parasite relationships. In this study an attempt was made to preserve the ovarian tissue at low temperature in the presence of cryoprotectants so that the tissue can be retrieved at any time and a cell culture could be developed.
Resumo:
Successful pest management is often hindered by the inherent complexity of the interactions of a pest with its environment. The use of genetically characterized model plants can allow investigation of chosen aspects of these interactions by limiting the number of variables during experimentation. However, it is important to study the generic nature of these model systems if the data generated are to be assessed in a wider context, for instance, with those systems of commercial significance. This study assesses the suitability of Arabidopsis thaliana (L.) Heynh. (Brassicaceae) as a model host plant to investigate plant-herbivore-natural enemy interactions, with Plutella xylostella (L.) (Lepidoptera: Plutellidae), the diamondback moth, and Cotesia plutellae (Kurdjumov) (Hymenoptera: Braconidae), a parasitoid of P. xylostella. The growth and development of P. xylostella and C. plutellae on an A. thaliana host plant (Columbia type) were compared to that on Brassica rapa var. pekinensis (L.) (Brassicaceae), a host crop that is widely cultivated and also commonly used as a laboratory host for P. xylostella rearing. The second part of the study investigated the potential effect of the different A. thaliana background lines, Columbia and Landsberg (used in wider scientific studies), on growth and development of P. xylostella and C. plutellae. Plutella xylostella life history parameters were found generally to be similar between the host plants investigated. However, C. plutellae were more affected by the differences in host plant. Fewer adult parasitoids resulted from development on A. thaliana compared to B. rapa, and those that did emerge were significantly smaller. Adult male C. plutellae developing on Columbia were also significantly smaller than those on Landsberg A. thaliana.
Resumo:
Dendrimers and hyperbranched polymers are a relatively new class of materials with unique molecular architectures and dimensions in comparison to traditional linear polymers. This review details recent notable advances in the application of these new polymers in terms of the development of new polymeric delivery systems. Although comparatively young, the developing field of hyperbranched drug delivery devices is a rapidly maturing area and the key discoveries in drug-conjugate systems amongst others are highlighted. As a consequence of their ideal hyperbranched architectures, the utilisation of host-guest chemistries in dendrimers has been included within the scope of this review. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Three heterometallic trinuclear Schiff base complexes, [{GuL(1)(H2O)}(2)Ni(CN)(4)]center dot 4H(2)O (1), [{CuL2(H2O)}(2)Ni(CN)(4)] (2), and [{CuL3(H2O)}(2)Ni(CN)(4)] (3) (HL1 = 7-amino-4-methyl-5-azahept-3-en-2-one, HL2 = 7-methylamino-4-methyl-5-azahept-3-en-2-one, and HL3 = 7-dimethylamino-4-methyl-5-azahept-3-en-2-one), were synthesized. All three complexes were characterized by elemental analysis, IR and UV spectroscopies, and thermal analysis. Two of them (1 and 3) were also characterized by single crystal X-ray crystallography. Complex 1 forms a hydrogen-bonded one-dimensional metal-organic framework that stabilizes a helical water chain into its cavity, but when any of the amine hydrogen atoms of the Schiff base are replaced by methyl groups, as in L 2 and L 3, the water chain, vanishes, showing explicitly the importance of the host-guest H-bonding interactions for the stabilization of a water cluster.
Resumo:
Novel macrocyclic receptors which bind electron-donor aromatic substrates via π-stacking donor- acceptor interactions are obtained by cyclo-imidization of an amine-functionalized arylether-sulfone with pyromellitic- and 1,4,5,8-naphthalene-tetracarboxylic dianhydrides. These macrocycles complex with a wide variety of π-donor substrates including tetrathiafulvalene, naphthalene, anthracene, pyrene, perylene, and functional derivatives of these polycyclic hydrocarbons. The resulting supramolecular assemblies range from simple 1:1 complexes, to [2]- and [3]-pseudorotaxanes, and even (as a result of crystallographic disorder) an apparent polyrotaxane. Direct, five-component self-assembly of a metal-centred [3]pseudorotaxane is also observed, on complexation of a macrocyclic ether-imide with 8-hydroxyquinoline in the presence of palladium(II) ions. Binding studies in solution were carried out by 1H NMR and UV-visible spectroscopy, and the stoichiometries of binding were confirmed by Job plots based on charge-transfer absorption bands. The highest association constants are found for strong π-donor guests with large surface-areas, notably perylene and 1-hydroxypyrene, for which Ka values of 1.4 x 103 and 2.3 x 103 M-1 respectively are found. Single crystal X-ray analyses of the receptors and their derived complexes reveal large, induced-fit distortions of the macrocyclic frameworks as a result of complexation. These structures provide compelling evidence for the existence of strong, attractive forces between the electronically-complementary aromatic π-systems of host and guest.
Resumo:
The gut microbiota enhances the host's metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution (1)H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. IMPORTANCE: Gut bacteria have been associated with various essential biological functions in humans such as energy harvest and regulation of blood pressure. Furthermore, gut microbial colonization occurs after birth in parallel with other critical processes such as immune and cognitive development. Thus, it is essential to understand the bidirectional interaction between the host metabolism and its symbionts. Here, we describe the first evidence of an in vivo association between a family of bacteria and hepatic lipid metabolism. These results provide new insights into the fundamental mechanisms that regulate host-gut microbiota interactions and are thus of wide interest to microbiological, nutrition, metabolic, systems biology, and pharmaceutical research communities. This work will also contribute to developing novel strategies in the alteration of host-gut microbiota relationships which can in turn beneficially modulate the host metabolism.
Resumo:
Background The process of weaning causes a major shift in intestinal microbiota and is a critical period for developing appropriate immune responses in young mammals.Objective To use a new systems approach to provide an overview of host metabolism and the developing immune system in response to nutritional intervention around the weaning period.Design Piglets (n=14) were weaned onto either an egg-based or soya-based diet at 3 weeks until 7 weeks, when all piglets were switched onto a fish-based diet. Half the animals on each weaning diet received Bifidobacterium lactis NCC2818 supplementation from weaning onwards. Immunoglobulin production from immunologically relevant intestinal sites was quantified and the urinary (1)H NMR metabolic profile was obtained from each animal at post mortem (11 weeks).Results Different weaning diets induced divergent and sustained shifts in the metabolic phenotype, which resulted in the alteration of urinary gut microbial co-metabolites, even after 4 weeks of dietary standardisation. B lactis NCC2818 supplementation affected the systemic metabolism of the different weaning diet groups over and above the effects of diet. Additionally, production of gut mucosa-associated IgA and IgM was found to depend upon the weaning diet and on B lactis NCC2818 supplementation.ConclusionThe correlation of urinary (1)H NMR metabolic profile with mucosal immunoglobulin production was demonstrated, thus confirming the value of this multi-platform approach in uncovering non-invasive biomarkers of immunity. This has clear potential for translation into human healthcare with the development of urine testing as a means of assessing mucosal immune status. This might lead to early diagnosis of intestinal dysbiosis and with subsequent intervention, arrest disease development. This system enhances our overall understanding of pathologies under supra-organismal control.