928 resultados para Graph eigenvalue
Resumo:
We consider the problem of self-healing in peer-to-peer networks that are under repeated attack by an omniscient adversary. We assume that, over a sequence of rounds, an adversary either inserts a node with arbitrary connections or deletes an arbitrary node from the network. The network responds to each such change by quick "repairs," which consist of adding or deleting a small number of edges. These repairs essentially preserve closeness of nodes after adversarial deletions,without increasing node degrees by too much, in the following sense. At any point in the algorithm, nodes v and w whose distance would have been - in the graph formed by considering only the adversarial insertions (not the adversarial deletions), will be at distance at most - log n in the actual graph, where n is the total number of vertices seen so far. Similarly, at any point, a node v whose degreewould have been d in the graph with adversarial insertions only, will have degree at most 3d in the actual graph. Our distributed data structure, which we call the Forgiving Graph, has low latency and bandwidth requirements. The Forgiving Graph improves on the Forgiving Tree distributed data structure from Hayes et al. (2008) in the following ways: 1) it ensures low stretch over all pairs of nodes, while the Forgiving Tree only ensures low diameter increase; 2) it handles both node insertions and deletions, while the Forgiving Tree only handles deletions; 3) it requires only a very simple and minimal initialization phase, while the Forgiving Tree initially requires construction of a spanning tree of the network. © Springer-Verlag 2012.
Resumo:
We address the presence of bound entanglement in strongly interacting spin systems at thermal equilibrium. In particular, we consider thermal graph states composed of an arbitrary number of particles. We show that for a certain range of temperatures no entanglement can be extracted by means of local operations and classical communication, even though the system is still entangled. This is found by harnessing the independence of the entanglement in some bipartitions of such states with the system's size. Specific examples for one- and two-dimensional systems are given. Our results thus prove the existence of thermal bound entanglement in an arbitrary large spin system with finite-range local interactions.
Resumo:
In this paper we propose a graph stream clustering algorithm with a unied similarity measure on both structural and attribute properties of vertices, with each attribute being treated as a vertex. Unlike others, our approach does not require an input parameter for the number of clusters, instead, it dynamically creates new sketch-based clusters and periodically merges existing similar clusters. Experiments on two publicly available datasets reveal the advantages of our approach in detecting vertex clusters in the graph stream. We provide a detailed investigation into how parameters affect the algorithm performance. We also provide a quantitative evaluation and comparison with a well-known offline community detection algorithm which shows that our streaming algorithm can achieve comparable or better average cluster purity.
Resumo:
In this study, we introduce an original distance definition for graphs, called the Markov-inverse-F measure (MiF). This measure enables the integration of classical graph theory indices with new knowledge pertaining to structural feature extraction from semantic networks. MiF improves the conventional Jaccard and/or Simpson indices, and reconciles both the geodesic information (random walk) and co-occurrence adjustment (degree balance and distribution). We measure the effectiveness of graph-based coefficients through the application of linguistic graph information for a neural activity recorded during conceptual processing in the human brain. Specifically, the MiF distance is computed between each of the nouns used in a previous neural experiment and each of the in-between words in a subgraph derived from the Edinburgh Word Association Thesaurus of English. From the MiF-based information matrix, a machine learning model can accurately obtain a scalar parameter that specifies the degree to which each voxel in (the MRI image of) the brain is activated by each word or each principal component of the intermediate semantic features. Furthermore, correlating the voxel information with the MiF-based principal components, a new computational neurolinguistics model with a network connectivity paradigm is created. This allows two dimensions of context space to be incorporated with both semantic and neural distributional representations.
Resumo:
Realising memory intensive applications such as image and video processing on FPGA requires creation of complex, multi-level memory hierarchies to achieve real-time performance; however commerical High Level Synthesis tools are unable to automatically derive such structures and hence are unable to meet the demanding bandwidth and capacity constraints of these applications. Current approaches to solving this problem can only derive either single-level memory structures or very deep, highly inefficient hierarchies, leading in either case to one or more of high implementation cost and low performance. This paper presents an enhancement to an existing MC-HLS synthesis approach which solves this problem; it exploits and eliminates data duplication at multiple levels levels of the generated hierarchy, leading to a reduction in the number of levels and ultimately higher performance, lower cost implementations. When applied to synthesis of C-based Motion Estimation, Matrix Multiplication and Sobel Edge Detection applications, this enables reductions in Block RAM and Look Up Table (LUT) cost of up to 25%, whilst simultaneously increasing throughput.
Resumo:
A (κ, τ)-regular set is a subset of the vertices of a graph G, inducing a κ-regular subgraph such that every vertex not in the subset has τ neighbors in it. A main eigenvalue of the adjacency matrix A of a graph G has an eigenvector not orthogonal to the all-one vector j. For graphs with a (κ, τ)-regular set a necessary and sufficient condition for an eigenvalue be non-main is deduced and the main eigenvalues are characterized. These results are applied to the construction of infinite families of bidegreed graphs with two main eigenvalues and the same spectral radius (index) and some relations with strongly regular graphs are obtained. Finally, the determination of (κ, τ)-regular sets is analyzed. © 2009 Elsevier Inc. All rights reserved.
Resumo:
A family of quadratic programming problems whose optimal values are upper bounds on the independence number of a graph is introduced. Among this family, the quadratic programming problem which gives the best upper bound is identified. Also the proof that the upper bound introduced by Hoffman and Lovász for regular graphs is a particular case of this family is given. In addition, some new results characterizing the class of graphs for which the independence number attains the optimal value of the above best upper bound are given. Finally a polynomial-time algorithm for approximating the size of the maximum independent set of an arbitrary graph is described and the computational experiments carried out on 36 DIMACS clique benchmark instances are reported.
Resumo:
Nesta tese são estabelecidas novas propriedades espectrais de grafos com estruturas específicas, como sejam os grafos separados em cliques e independentes e grafos duplamente separados em independentes, ou ainda grafos com conjuntos (κ,τ)-regulares. Alguns invariantes dos grafos separados em cliques e independentes são estudados, tendo como objectivo limitar o maior valor próprio do espectro Laplaciano sem sinal. A técnica do valor próprio é aplicada para obter alguns majorantes e minorantes do índice do espectro Laplaciano sem sinal dos grafos separados em cliques e independentes bem como sobre o índice dos grafos duplamente separados em independentes. São fornecidos alguns resultados computacionais de modo a obter uma melhor percepção da qualidade desses mesmos extremos. Estudamos igualmente os grafos com um conjunto (κ,τ)-regular que induz uma estrela complementar para um valor próprio não-principal $. Além disso, é mostrado que $=κ-τ. Usando uma abordagem baseada nos grafos estrela complementares construímos, em alguns casos, os respectivos grafos maximais. Uma caracterização dos grafos separados em cliques e independentes que envolve o índice e as entradas do vector principal é apresentada tal como um majorante do número da estabilidade dum grafo conexo.
Resumo:
An upper bound for the sum of the squares of the entries of the principal eigenvector corresponding to a vertex subset inducing a k-regular subgraph is introduced and applied to the determination of an upper bound on the order of such induced subgraphs. Furthermore, for some connected graphs we establish a lower bound for the sum of squares of the entries of the principal eigenvector corresponding to the vertices of an independent set. Moreover, a spectral characterization of families of split graphs, involving its index and the entries of the principal eigenvector corresponding to the vertices of the maximum independent set is given. In particular, the complete split graph case is highlighted.
Resumo:
Let G be a finite graph with an eigenvalue μ of multiplicity m. A set X of m vertices in G is called a star set for μ in G if μ is not an eigenvalue of the star complement G\X which is the subgraph of G induced by vertices not in X. A vertex subset of a graph is (k ,t)-regular if it induces a k -regular subgraph and every vertex not in the subset has t neighbors in it. We investigate the graphs having a (k,t)-regular set which induces a star complement for some eigenvalue. A survey of known results is provided and new properties for these graphs are deduced. Several particular graphs where these properties stand out are presented as examples.
Resumo:
Let p(G)p(G) and q(G)q(G) be the number of pendant vertices and quasi-pendant vertices of a simple undirected graph G, respectively. Let m_L±(G)(1) be the multiplicity of 1 as eigenvalue of a matrix which can be either the Laplacian or the signless Laplacian of a graph G. A result due to I. Faria states that mL±(G)(1) is bounded below by p(G)−q(G). Let r(G) be the number of internal vertices of G. If r(G)=q(G), following a unified approach we prove that mL±(G)(1)=p(G)−q(G). If r(G)>q(G) then we determine the equality mL±(G)(1)=p(G)−q(G)+mN±(1), where mN±(1) denotes the multiplicity of 1 as eigenvalue of a matrix N±. This matrix is obtained from either the Laplacian or signless Laplacian matrix of the subgraph induced by the internal vertices which are non-quasi-pendant vertices. Furthermore, conditions for 1 to be an eigenvalue of a principal submatrix are deduced and applied to some families of graphs.
Resumo:
Thesis (Master's)--University of Washington, 2016-03