920 resultados para Grain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication of functional materials via grain growth engineering implicitly relies on altering the mobilities of grain boundaries (GBs) by applying external fields. Although computer simulations have alluded to kinetic roughening as a potential mechanism for modifying GB mobilities, its implications for grain growth have remained largely unexplored owing to difficulties in bridging the widely separated length and time scales. Here, by imaging GB particle dynamics as well as grain network evolution under shear, we present direct evidence for kinetic roughening of GBs and unravel its connection to grain growth in driven colloidal polycrystals. The capillary fluctuation method allows us to quantitatively extract shear-dependent effective mobilities. Remarkably, our experiments reveal that for sufficiently large strains, GBs with normals parallel to shear undergo preferential kinetic roughening, resulting in anisotropic enhancement of effective mobilities and hence directional grain growth. Single-particle level analysis shows that the mobility anisotropy emerges from strain-induced directional enhancement of activated particle hops normal to the GB plane. We expect our results to influence materials fabrication strategies for atomic and block copolymeric polycrystals as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-temperature oxidation behavior of modified 304 austenitic stainless steels in a water vapor atmosphere was investigated. Samples were prepared by various thermo mechanical treatments to result in different grain sizes in the range 8-30 mu m. Similar I 3 pound grain boundary fraction was achieved to eliminate any grain-boundary characteristics effect. Samples were oxidized in an air furnace at 700 A degrees C with 20 % water vapor atmosphere. On the fine-grained sample, a uniform Cr2O3 layer was formed, which increased the overall oxidation resistance. Whereas on the coarse-grained sample, an additional Fe2O3 layer formed on the Cr-rich oxide layer, which resulted in a relatively high oxidation rate. In the fine-grained sample, grain boundaries act as rapid diffusion paths for Cr and provided enough Cr to form Cr2O3 oxide on the entire sample surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grain boundary dynamics and grain growth play a pivotal role in the fabrication of functional polycrystalline materials. However, not much is known about the delicate interplay between various microscopic processes that drive grain boundary motion which eventually culminates in the desired grain morphology. Colloidal systems are ideally suited to bridge the gap between the microscopic and macroscopic processes underlying grain growth, since their dynamics can be followed in real space and real time with single-particle resolution. The present review aims at highlighting contributions from colloid experiments that have led to a holistic understanding of grain growth in polycrystalline materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure and mechanical properties of nanocrystalline Pd films prepared by magnetron sputtering have been investigated as a function of strain. The films were deposited onto polyimide substrates and tested in tensile mode. In order to follow the deformation processes in the material, several samples were strained to defined straining states, up to a maximum engineering strain of 10%, and prepared for post-mortem analysis. The nanocrystalline structure was investigated by quantitative automated crystal orientation mapping (ACOM) in a transmission electron microscope (TEM), identifying grain growth and twinning/detwinning resulting from dislocation activity as two of the mechanisms contributing to the macroscopic deformation. Depending on the initial twin density, the samples behaved differently. For low initial twin densities, an increasing twin density was found during straining. On the other hand, starting from a higher twin density, the twins were depleted with increasing strain. The findings from ACOM-TEM were confirmed by results from molecular dynamics (MD) simulations and from conventional and in-situ synchrotron X-ray diffraction (CXRD, SXRD) experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims at extending the universal erosive burning law developed by two of the present authors from axi-symmetric internally burning grains to partly symmetric burning grains. This extension revolves around three dimensional flow calculations inside highly loaded grain geometry and benefiting from an observation that the flow gradients normal to the surface in such geometries have a smooth behavior along the perimeter of the grain. These are used to help identify the diameter that gives the same perimeter the characteristic dimension rather than a mean hydraulic diameter chosen earlier. The predictions of highly loaded grains from the newly chosen dimension in the erosive burning law show better comparison with measured pressure-time curves while those with mean hydraulic diameter definitely over-predict the pressures. (c) 2013 IAA. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bio-corrosion response of ultrafine-grained commercially pure titanium processed by different routes of equal-channel angular pressing has been studied in simulated body fluid. The results indicate that the samples processed through route B-c that involved rotation of the workpiece by 90 deg in the same sense between each pass exhibited higher corrosion resistance compared to the ones processed by other routes of equal-channel angular pressing, as well as the coarse-grained sample. For a similar grain size, the higher corrosion resistance of the samples exhibiting off-basal texture compared to shear texture indicates the major role of texture in corrosion behavior. It is postulated that an optimum combination of microstructure and crystallographic texture can lead to high strength and excellent corrosion resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolution of texture and concomitant grain refinement during Equal Channel Angular Pressing (ECAP) of Ti - 13Nb - 13Zr alloy has been presented. Sub-micron sized equiaxed grains with narrow grain size distribution could be achieved after eight pass at 873 K. A characteristic ECAP texture evolved in alpha phase till four passes while the evolution of characteristic ECAP texture in the beta phase could be observed only beyond the fourth pass. On increasing the deformation up to eight passes, the texture in alpha phase weakens while the beta phase shows an ideal ECAP texture. A weaker texture, low dislocation density and high crystallite size values in alpha phase suggest the occurrence of dynamic recrystallization. The absence of texture evolution in beta phase till four passes can be attributed to local lattice rotations. The characteristic ECAP texture in the eight pass deformed sample is attributed to delayed dynamic recrystallization in the beta phase. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation instabilities, such as shear cracking and grain boundary cavitation, which are observed in the secondary tensile region of Ti-6Al-4V alloy during compressive deformation in the (+)-phase field, do not form in Ti-6Al-4V-0.1B alloy when processed under the same conditions. This has been attributed to the microstructural modifications, e.g. the absence of grain boundary and adjacent grain boundary retained layers and a lower proportion of 90(o)-misoriented -colonies that occur with boron addition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to environmental concerns, health hazards to man and the evolution of resistance in insect pests, there have been constant efforts to discover newer insecticides both from natural sources and by chemical synthesis. Natural sources for novel molecules hold promise in view of their eco-friendly nature, selectivity and mammalian safety. We have isolated one natural bioactive molecule from the leaves of Lantana camara named Coumaran, based on various physical-chemical and spectroscopic techniques (IR, H-1 NMR, C-13 NMR and MS). Coumaran is highly toxic and very low concentration is needed for control of stored product insects. This molecule has potent grain protectant potential and caused significant reduction in F1 progeny of all the three species in the treated grain and the progeny was completely suppressed at 30 mu g/l. The differences in germination between the control and treated grains were not significant. The lack of any adverse effect of Coumaran on the seed germination is highly desirable for a grain protectant, becoming a potential source of biofumigant for economical and environmentally friendly pest control strategies against stored grain pests during storage of grains or pulses. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the impact of the nucleation law for nucleation on Al-Ti-B inoculant particles, of the motion of inoculant particles and of the motion of grains on the predicted macrosegregation and microstructure in a grain-refined Al-22 wt.% Cu alloy casting. We conduct the study by numerical simulations of a casting experiment in a side-cooled 76×76×254 mm sand mould. Macrosegregation and microstructure formation are studied with a volume-averaged two-phase model accounting for macroscopic heat and solute transport, melt convection, and transport of inoculant particles and equiaxed grains. On the microscopic scale it accounts for nucleation on inoculant particles with a given size distribution (and corresponding activation undercooling distribution)and for the growth of globular solid grains. The growth kinetics is described by accounting for limited solute diffusion in both liquid and solid phases and for convective effects. We show that the consideration of a size distribution of the inoculants has a strong impact on the microstructure(final grain size) prediction. The transport of inoculants significantly increases the microstructure heterogeneities and the grain motion refines the microstructure and reduces the microstructure heterogeneities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although grain boundary sliding (GBS) has been recognized as an important process during high-temperature deformation in crystalline materials, there is paucity in experimental data for characterizing a constitutive equation for GBS. High-temperature tensile creep experiments were conducted, together with measurements of GBS at different strains, stresses, grain sizes, and temperatures. Experimental data obtained on a Mg AZ31 alloy demonstrate that, for the first time, dynamic recrystallization during creep does not alter the contribution of GBS to creep during high-temperature deformation. The experimentally observed invariance of the sliding contribution with strain was used together with the creep data for developing a constitutive equation for GBS in a manner similar to the standard creep equation. Using this new approach, it is demonstrated that the stress, grain size, and temperature dependence for creep and GBS are identical. This is rationalized by a model based on GBS controlled by dislocations, within grains or near-grain boundaries. (C) The Minerals, Metals & Materials Society and ASM International 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rice landraces are lineages developed by farmers through artificial selection during the long-term domestication process. Despite huge potential for crop improvement, they are largely understudied in India. Here, we analyse a suite of phenotypic characters from large numbers of Indian landraces comprised of both aromatic and non-aromatic varieties. Our primary aim was to investigate the major determinants of diversity, the strength of segregation among aromatic and non-aromatic landraces as well as that within aromatic landraces. Using principal component analysis, we found that grain length, width and weight, panicle weight and leaf length have the most substantial contribution. Discriminant analysis can effectively distinguish the majority of aromatic from non-aromatic landraces. More interestingly, within aromatic landraces long-grain traditional Basmati and short-grain non-Basmati aromatics remain morphologically well differentiated. The present research emphasizes the general patterns of phenotypic diversity and finds out the most important characters. It also confirms the existence of very unique short-grain aromatic landraces, perhaps carrying signatures of independent origin of an additional aroma quantitative trait locus in the indica group, unlike introgression of specific alleles of the BADH2 gene from the japonica group as in Basmati. We presume that this parallel origin and evolution of aroma in short-grain indica landraces are linked to the long history of rice domestication that involved inheritance of several traits from Oryza nivara, in addition to O. rufipogon. We conclude with a note that the insights from the phenotypic analysis essentially comprise the first part, which will likely be validated with subsequent molecular analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of 3 wt% Cu to heat-resistant SUS 304H austenitic steel enhances its high temperature mechanical properties. To further improve the properties, particularly the creep resistance and ductility at high temperatures, a post-solutionizing heat-treatment method that involves an intermediated annealing either at 700 or 800 degrees C after solutionizing for durations up to 180 min was employed. The purpose this heat-treatment is to precipitate planar Cr23C6 at the grain boundaries, which results in the boundaries getting serrated. Detailed microstructural analyses of these `grain boundary engineered' alloys was conducted and their mechanical performance, both at room temperature and at 750 degrees C, was evaluated. While the grain size and texture are unaffected due to the high temperature hold, the volume fraction of Sigma 3 twin boundaries was found to increase significantly. While the strength enhancement was only marginal, the ductility was found to increase significantly, especially at high temperature. A marked increase in the creep resistance was also noted, which is attributed to the reduction of the grain boundary sliding by the grain boundary serrations and the suppression of grain boundary cavitation through the optimization of the volume fraction and spacing of the Cr23C6 precipitates. The special heat-treatment performed with holding time of 3 h at 700 degrees C resulted in the optimum combination of strength, ductility and creep resistance at high temperature. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we present the results of temperature dependent dielectric studies on chemical solution processed Zr-doped BiFeO3 (BFO) thin films deposited on Pt/Si substrates. We find that in contrast to the undoped BFO films, Zr doping at Fe-site suppresses the low frequency dielectric relaxation originating from the grain boundaries, attributed to the increased dipolar rigidity due to stronger Zr-O bonds. Temperature dependent dc conductivity obtained from impedance and modulus analyses shows two distinct conduction processes occurring inside the grains. At temperature below similar to 423K, conductivity is nearly temperature independent, while in the high temperature regime (above similar to 423K), conduction is governed by the long range movement of oxygen vacancies with an activation energy of similar to 1eV. (C) 2014 AIP Publishing LLC.