233 resultados para Gotas
Pulverização eletrostática e assistência de ar no tratamento fitossanitário na cultura do algodoeiro
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The air included in droplets generated by spray nozzles directly int0erferes in transport, deposition and retention of the droplets after its impact on the target. The objective of this study was to analyze the interference of adjuvants in the amount of air included in droplets generated by spray nozzles. The treatments were composed by four spray solutions containing mineral oil, vegetable oil, surfactant and water, and three spray nozzles, two air induction type and one pre-orifice. The air included was calculated by the difference between the volume of spray mix (air plus liquid) and only the liquid, which was made by means of sprayed samples captured in a funnel and collected in a graduated cylinder. The surface tension was estimated by the gravimetric method using a precision scale and a graduated pipette. The surfactant provided the largest percentage of air included in the spray. For the surface tension, the mineral oil and the surfactant had the lowest values. It was concluded that the use of adjuvants had a direct influence on the percentage of air included. In addition, products with greater ability to reduce surface tension and to form homogeneous solutions provided the increase in the percentage of air included in the droplet.
Resumo:
The aim of the research was to evaluate the effect of adjuvants on the spray drift applications from mixture of 2,4-D + glyphosate. The trial was carried out in field conditions in a completely randomized design. The treatments corresponded to solutions containing mixture of the herbicides 2,4-D + glyphosate (670 and 1068g ha-1, respectively) adding the adjuvants (v v-1): mineral oil (0.5%); anti-drift agent (0.09%); spreader-sticker A (0.1%); liquid fertilizer (0.05%); spreader-sticker B (0.25%); and only herbicides without adjuvantes (control). Nylon strings were used to drift determination outside the application area (1, 5, 10, 20, 50, 100 and 200 m away) with 4 replications and six foam cylinders placed on the boom of the sprayer were used to collect the droplets subject to drift. The applications were performed simultaneously, using a specific salt tracer for each spray solution to quantify the deposits by spectrophotometer. It was not possible to verify effect of the adjuvants on drift at different distances of the application area. Based on droplets collected above the boom spray, it was found that susceptibility to drift was lower with the mineral oil and the anti-drift agent. The drift risk was higher with the liquid fertilizer and the spreader-sticker B.
Resumo:
The classic Millikan experiment to determine the electron charge is very interesting from the point of view of statistics of experimental measurements. In a physics laboratory it is suggested to divide the obtained values of the electric charge by the value of an electron charge, and it is possible to experimentally establish that the oil droplets carry integer numbers of electrons. This work presents a new statistical algorithm for the treatment of measurements and for determining the best value of the electron charge in a Millikan experiment.