996 resultados para Glycine betaine
Resumo:
To characterize the impact of gut microbiota on host metabolism, we investigated the multicompartmental metabolic profiles of a conventional mouse strain (C3H/HeJ) (n=5) and its germ-free (GF) equivalent (n=5). We confirm that the microbiome strongly impacts on the metabolism of bile acids through the enterohepatic cycle and gut metabolism (higher levels of phosphocholine and glycine in GF liver and marked higher levels of bile acids in three gut compartments). Furthermore we demonstrate that (1) well-defined metabolic differences exist in all examined compartments between the metabotypes of GF and conventional mice: bacterial co-metabolic products such as hippurate (urine) and 5-aminovalerate (colon epithelium) were found at reduced concentrations, whereas raffinose was only detected in GF colonic profiles. (2) The microbiome also influences kidney homeostasis with elevated levels of key cell volume regulators (betaine, choline, myo-inositol and so on) observed in GF kidneys. (3) Gut microbiota modulate metabotype expression at both local (gut) and global (biofluids, kidney, liver) system levels and hence influence the responses to a variety of dietary modulation and drug exposures relevant to personalized health-care investigations.
Resumo:
The first application of high field NMR spectroscopy (800 MHz for 1H observation) to human hepatic bile (as opposed to gall bladder bile) is reported. The bile sample used for detailed investigation was from a donor liver with mild fat infiltration, collected during organ retrieval prior to transplantation. In addition, to focus on the detection of bile acids in particular, a bile extract was analysed by 800 MHz 1H NMR spectroscopy, HPLC-NMR/MS and UPLC-MS. In the whole bile sample, 40 compounds have been assigned with the aid of two-dimensional 1H–1H TOCSY and 1H–13C HSQC spectra. These include phosphatidylcholine, 14 amino acids, 10 organic acids, 4 carbohydrates and polyols (glucose, glucuronate, glycerol and myo-inositol), choline, phosphocholine, betaine, trimethylamine-N-oxide and other small molecules. An initial NMR-based assessment of the concentration range of some key metabolites has been made. Some observed chemical shifts differ from expected database values, probably due to a difference in bulk diamagnetic susceptibility. The NMR spectra of the whole extract gave identification of the major bile acids (cholic, deoxycholic and chenodeoxycholic), but the glycine and taurine conjugates of a given bile acid could not be distinguished. However, this was achieved by HPLC-NMR/MS, which enabled the separation and identification of ten conjugated bile acids with relative abundances varying from approximately 0.1% (taurolithocholic acid) to 34.0% (glycocholic acid), of which, only the five most abundant acids could be detected by NMR, including the isomers glycodeoxycholic acid and glycochenodeoxycholic acid, which are difficult to distinguish by conventional LC-MS analysis. In a separate experiment, the use of UPLC-MS allowed the detection and identification of 13 bile acids. This work has shown the complementary potential of NMR spectroscopy, MS and hyphenated NMR/MS for elucidating the complex metabolic profile of human hepatic bile. This will be useful baseline information in ongoing studies of liver excretory function and organ transplantation.
Resumo:
We present a quantitative low energy electron diffraction (LEED) surface-crystallograpic study of the complete adsorption geometry of glycine adsorbed on Cu{110} in the ordered p(3×2) phase. The glycine molecules form bonds to the surface through the N atoms of the amino group and the two O atoms of the de-protonated carboxylate group, each with separate Cu atoms such that every Cu atom in the first layer is involved in a bond. Laterally, N atoms are nearest to the atop site (displacement 0.41 Å). The O atoms are asymmetrically displaced from the atop site by 0.54 Å and 1.18 Å with two very different O-Cu bond lengths of 1.93 Å and 2.18 Å. The atom positions of the upper-most Cu layers show small relaxations within 0.07 Å of the bulk-truncated surface geometry. The unit cell of the adsorbate layer consists of two glycine molecules, which are related by a glide-line symmetry operation. This study clearly shows that a significant coverage of adsorbate structures without this glide-line symmetry must be rejected, both on the grounds of the energy dependence of the spot intensities (LEED-IV curves) and of systematic absences in the LEED pattern.
Resumo:
A spontaneous high hydrostatic pressure (HHP)-tolerant mutant of Listeria monocytogenes ScottA, named AK01, was isolated previously. This mutant was immotile and showed increased resistance to heat, acid and H2O2 compared with the wild type (wt) (Karatzas, K.A.G. and Bennik, M.H.J. 2002 Appl Environ Microbiol 68: 3183–3189). In this study, we conclusively linked the increased HHP and stress tolerance of strain AK01 to a single codon deletion in ctsR (class three stress gene repressor) in a region encoding a highly conserved glycine repeat. CtsR negatively regulates the expression of the clp genes, including clpP, clpE and the clpC operon (encompassing ctsR itself), which belong to the class III heat shock genes. Allelic replacement of the ctsR gene in the wt background with the mutant ctsR gene, designated ctsRΔGly, rendered mutants with phenotypes and protein expression profiles identical to those of strain AK01. The expression levels of CtsR, ClpC and ClpP proteins were significantly higher in ctsRΔGly mutants than in the wt strain, indicative of the CtsRΔGly protein being inactive. Further evidence that the CtsRΔGly protein lacks its repressor function came from the finding that the Clp proteins in the mutant were not further induced upon heat shock, and that HHP tolerance of a ctsR deletion strain was as high as that of a ctsRΔGly mutant. The high HHP tolerance possibly results from the increased expression of the clp genes in the absence of (active) CtsR repressor. Importantly, the strains expressing CtsRΔGly show significantly attenuated virulence compared with the wt strain; however, no indication of disregulation of PrfA in the mutant strains was found. Our data highlight an important regulatory role of the glycine-rich region of CtsR in stress resistance and virulence.
Resumo:
Adsorption of glycine on Ptf111g under UHV conditions and in different aqueous environments was studied by XPS (UHV and ambient pressure) and NEXAFS. Under UHV conditions, glycine adsorbs in its neutral molecular state up to about 0.15 ML. Further deposition leads to the formation of an additional zwitterionic species, which is in direct contact with the substrate surface, followed by the growth of multilayers, which also consist of zwitterions. The neutral surface species is most stable and decomposes at 360 K through a multi-step process which includes the formation of methylamine and carbon monoxide. When glycine and water are co-adsorbed in UHV at low temperatures (< 170 K) inter-layer diffusion is inhibited and the surface composition depends on the adsorption sequence. Water adsorbed on top of a glycine layer does not lead to significant changes in its chemical state. When glycine is adsorbed on top of a pre-adsorbed chemisorbed water layer or thick ice layer, however, it is found in its zwitterionic state, even at low coverage. No difference is seen in the chemical state of glycine when the layers are exposed to ambient water vapor pressure up to 0.2 Torr at temperatures above 300 K. Also the decomposition temperature stays the same, 360 K, irrespective of the water vapor pressure. Only the reaction path of the decomposition products is affected by ambient water vapor.
Resumo:
Understanding the interplay between intrinsic molecular chirality and chirality of the bonding footprint is crucial in exploiting enantioselectivity at surfaces. As such, achiral glycine and chiral alanine are the most obvious candidates if one is to study this interplay on different surfaces. Here, we have investigated the adsorption of glycine on Cu{311} using reflection-absorption infrared spectroscopy, low-energy electron diffraction, temperature-programmed desorption and first-principles density-functional theory. This combination of techniques has allowed us to accurately identify the molecular conformations present under different conditions, and discuss the overlayer structure in the context of the possible bonding footprints. We have observed coverage-dependent local symmetry breaking, with three-point bonded glycinate moieties forming an achiral arrangement at low coverages, and chirality developing with the presence of two-point bonded moieties at high coverages. Comparison with previous work on the self-assembly of simple amino acids on Cu{311} and the structurally-similar Cu{110} surface has allowed us to rationalise the different conditions necessary for the formation of ordered chiral overlayers.
Resumo:
A detailed analysis of the many-body contribution to the interaction energies of the gas-phase hydrogen-bonded glycine clusters, (Gly)(N), N = 1-4 is presented. The energetics of the hydrogen-bonded dimer, trimer and tetramer complexes have been analyzed using density-functional theory. The magnitude of the two-through four-body energy terms have been calculated and compared. The relaxation energy and the two-body energy terms are the principal contributors to the total binding energy. Four-body contribution is negligible. However, the three-body contribution is found to be sizable and the formation of the cyclic glycine trimer presents geometric strains that make it less favorable. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Betaine dyes are known to show very large transition energy shifts in different solvents. The ortho-betaine molecule - a simple two-ring prototype of the E-T(30) Reichardt dye - has been investigated theoretically from a combined statistical and quantum mechanics approach. Using sequential Monte Carlo (MC) simulations and MP2/cc-pVDZ calculations the in-water dipole moment of ortho-betaine is obtained as 12.30 +/- 0.05 D. This result shows a considerable increase of 75% compared to the in-vacuum dipole moment. For comparison, the use of a polarizable continuum model using the same MP2/cc-pVDZ leads to an in-water dipole moment of 11.6 D, in good agreement. This large polarization is incorporated in the classical potential for another MC simulation to generate solute-solvent configurations and to obtain the contribution of the polarization effect in the solvatochromic shift. Using statistically uncorrelated configurations and supermolecular INDO/CIS calculations, including the solute and, explicitly, 230 solvent water molecules, the statistically converged calculated shift is obtained here as 6360 cm(-1), in good agreement with the experimental result of 7550 cm(-1). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The goal of this study is to evaluate the influence of the urea and glycine fuels on the synthesis of Mn-Zn ferrite by combustion reaction The morphology and magnetic properties of the resulting powders were investigated. The powders were characterized by X-ray diffraction (XRD), nitrogen adsorption (BET), scanning and transmission electron microscopy (SEM and TEM), and magnetic measurement of M x H curves. The X-lay diffraction patterns indicated that the samples containing urea resulted in the formation of crystalline powders and the presence of hematite as a secondary phase The samples containing glycine presented only the formation of crystalline and monophases (Mn,Zn)Fe(2)O(4). The average crystallite size was 18 and 35 nm and saturation magnetization was 3.6 and 75 emu/g, respectively, for the samples containing urea and glycine. The samples synthesized with glycine fuel showed better magnetic properties for application as soft magnetic devices. (C) 2009 Elsevier B.V All rights reserved
Resumo:
SBTX, a novel toxin from soybean, was purified by ammonium sulfate fractionation followed by chromatographic steps DEAE-Cellulose, CM-Sepharose and Superdex 200 HR fast-protein liquid chromatography (FPLC). Lethality of SBTX to mice (LD50 5.6 mg/kg) was used as parameter in the purification steps. SBTX is a 44-kDa basic glycoprotein composed of two polypeptide chains (27 and 17 kDa) linked by a disulfide bond. The N-terminal sequences of the 44 and 27 kDa chains were identical (ADPTFGFTPLGLSEKANLQIMKAYD), differing from that of 17 kDa (PNPKVFFDMTIGGQSAGRIVMEEYA). SBTX contains high levels of Glx, Ala, Asx, Gly and Lys and showed maximum absorption at 280 nm, epsilon(1 cm) (1%) of 6.3, and fluorescence emission in the 290-450nm range upon excitation at 280nm. The secondary structure content was 35% alpha-helix, 13% beta-strand and beta-sheet, 27% beta-turn, 25% unordered, and 1% aromatic residues. Immunological assays showed that SBTX was related to other toxic proteins, such as soyatoxin and canatoxin, and cross-reacted weekly with soybean trypsin inhibitor and agglutinin, but it was devoid of protease-inhibitory and hemagglutinating activities. The inhibitory effect of SBTX on growth of Cercospora sojina, fungus causing frogeye leaf spot in soybeans, was observed at 50 mu g/ml, concentration 112 times lesser than that found to be lethal to mice. This effect on phytopathogenic fungus is a potential attribute for the development of transgenic plants with enhanced resistance to pathogens. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The electrocatalytic oxidation of glycine by doped nickel hydroxide modified electrodes and their use as sensors are described. The electrode modification was carried out by a simple electrochemical coprecipitation and its electrochemical properties were investigated. The modified electrode presented activity for glycine oxidation after applying a potential required to form NiOOH (similar to 0.45 V vs Ag/AgCl). In these conditions a sensitivity of 0.92 mu A mmol(-1) L and a linear response range from 0.1 up to 1.2 mmol L(-1) were achieved in the electrolytic Solutions at PH 12.6. Limits of detection and quantification were found to be 30 and 110 mu mol L(-1), respectively. Kinetic studies performed with rotating disk electrode (RDE) and by chronoamperometry allowed to determine the heterogeneous rate constant of 4.3 x 10(2) mol(-1) Ls(-1), Suggesting that NiOOH is a good electrocatalyst for glycine oxidation. NiOOH activity to oxidize other amino acids was also investigated, (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Competition studies with soybeans, Glycine max (L.) Merr. "Bragg." and sicklepod, Cassia obtusifolia L., were conducted at the Agricultural Research and Education Center of the University of Florida in Quincy, Florida. Two field experiments were established, one on May 22, 1975. and the other four weeks later, on June 19, 1975, to determine the competitive effects of various sicklepod densities and the influences of soybean row distances on weed dry matter, soybear plant characteristics, yield components and seed yield, and on soil nutrient content. Control, low, medium, and high sicklepod densities in the first experiment were O, 25,000, 53,000, and 77,000 p1ants/ha, respectively; while the second experiment presented control, low, medium, and high sicklepod densities of O, 36,000, 68,000, and 122,000 plants/ha, respectively. Three soybean row distance treatments were tested using a constant pattern of 90-, 60-, and 45-cm widths throughout the growing season. Three other treatments, evaluated in a variable patern, were initially seeded in 30-cm row widths. Five weeks after planting, an appropriate number of soybean rows were harvested from the 30"cm pattern to establish row distances of 90, 60, and 30-60 cm for the remainder of the season. ln the greenhouse a test was conducted to evaluate the effects af those variables on seed germination and seedling vigor for the next soybean generation. As a result of full-season sicklepod competition, soybean plants were less branched, set fewer leaves, and presented thinner stems as compared to the control. However, height of soybean plants was not affected by the presence of sicklepod. ln one of the two experiments, number of nodes decreased for soybeans under weed campetition. The yield components--number of pods; number of seeds, and seed yield per soybean plant--were all similarly reduced due to weed competition. Seeds per pod were decreased to a lesser extent. Soybean seed yields per unit area were significantly diminished by increasing levels af sicklepod ínfestation. While the control produced 3120 kg/ha, the sicklepod densities of 25,000, 53,000, and 77,000 plants/ha reduced seed yíelds 47, 65, and 73%, respectively. As soybean row distances decreased, number of branches, number of leaves, and stem diameter of soybeans decreased. However, the height of soybean plants increased with narrwing of row width. The components of seed yield--number of pods, number of seeds, and seed yield per soybean plant--diminished as row spacing was reduced. Maximum difference between row distances for these attributes was attained for soybean plants under weed-free conditions. Generally, as row width decreased, soybean seed yield per unit area increased. Specifically, soybear.s in 90-cm rows, either in constant or variable row pattern, yielded less than soybeans in 60- and 30-60-cm rows in the variable pattern. Soil contents of phosphorus, potassium, calcium, and magnesium were not affected by the various levels of sicklepod and soybean populalions. Neither the sicklepod densities nor the soybean row distances influenced seed germination and seedling vigor in the next soybean generation. Sicklepod was a strong competitor with soybeans at all density ranges investigated. Because sicklepod grows taller than soybeans during the reproductive stages of the crop, limited success can be reached by varying row spacing alone. However, this practice is considered an integral measure to complement other methods of sicklepod control. Compared to constant rows, the soybean cropping system using variable row spacings presents the choice of planting soybeans at close row spacings to provide early competition with weeds and the possibility of obtaining a forage crop after the first month of growth, without any decreases on the final seed yields.
Resumo:
O objetivo do presente trabalho foi otimizar o sistema de transformação genética de embriões somáticos de soja [Glycine max (L.) Merr.] utilizando a biolística e o sistema Agrobacterium de maneira integrada. Os antibióticos, adicionados ao meio de cultura para supressão da bactéria após a transferência do transgene, foram o alvo do estudo. Inicialmente, comparou-se o efeito de diferentes tratamentos com antibióticos sobre o tecido embriogênico de soja e sua eficiência na supressão da linhagem LBA4404 de Agrobacterium tumefaciens durante o processo de transformação. A carbenicilina (500 mg/l) apresentou efeitos diferentes sobre o tecido vegetal das duas cultivares testadas. Os tecidos embriogênicos da cv. IAS5 não apresentaram diferenças significativas em relação ao controle, enquanto que a proliferação dos embriões somáticos da cv. Bragg foi três vezes maior com a adição deste antibiótico ao meio de cultura. Contudo, a presença da carbenicilina nas duas concentrações testadas (500 e 1000 mg/l) não foi eficiente para supressão de Agrobacterium. Por outro lado, nos tratamentos com cefotaxima sozinha (350 e 500 mg/l), ou cefotaxima (250 mg/l) + vancomicina (250 mg/l) esta bactéria foi completamente suprimida da superfície dos embriões somáticos após 49 dias de tratamento. No entanto, enquanto a presença de cefotaxima, em qualquer concentração, foi prejudicial à sobrevivência do tecido embriogênico, a combinação de cefotaxima + vancomicina não afetou significativamente os embriões somáticos de soja até os 63 dias de tratamento. Portanto, os resultados indicam que o tratamento com cefotaxima + vancomicina por um período de 49 - 63 dias é o mais adequado para a transformação genética de soja, por suprimir Agrobacterium e apresentar mínimos efeitos sobre o tecido embriogênico. Por fim, conjuntos de embriões somáticos de soja foram transformados e tratados com a combinação recomendada de antibióticos para avaliação da eficiência do método na obtenção de transformantes estáveis. Foram obtidos 48 e 232 clones higromicina-resistentes para Bragg e IAS5, respectivamente. Para cv. Bragg, 26 plantas foram obtidas de um único clone, enquanto 580 plantas foram regeneradas de 105 clones da cv. IAS5. As plantas transgênicas eram férteis e morfologicamente normais. A presença do transgene no genoma destas plantas foi confirmada por análises moleculares. Portanto, a adequação dos antibióticos permitiu o desenvolvimento de um método de transformação altamente eficiente para soja. Os resultados do presente trabalho constituem o primeiro registro (1) do efeito de antibióticos sobre tecidos de soja ou de leguminosas e (2) de obtenção de transformantes estáveis de soja utilizando a biolística e o sistema Agrobacterium de maneira integrada.
Resumo:
Visando aumentar a resistência a moléstias fúngicas, o presente trabalho teve como objetivo introduzir um gene (chit1) que codifica uma quitinase do fungo Metarhizium anisopliae em cultivares de soja [Glycine max (L.) Merrill]. A co-transformação foi a estratégia escolhida, visando a obtenção de plantas livres de transgenes marcadores na progênie das plantas transformadas. A co-transformação foi realizada via biolística, tendo como tecido-alvo conjuntos de embriões somáticos globulares das cultivares MG/BR46 Conquista e IAS-5. O plasmídeo pGusHyg, que contém o gene repórter gusA e o gene marcador hpt, foi bombardeado concomitantemente com o plasmídeo pMOG463chit1, que porta o gene chit1. Os conjuntos de embriões bombardeados foram transferidos para meio seletivo contendo higromicina, visando a obtenção de material estavelmente transformado. Os conjuntos embriogênicos higromicina-resistentes foram transferidos seqüencialmente para meios de proliferação D-20 (sem higromicina), maturação e regeneração. No total, foram obtidos 387 e 380 embriões histodiferenciados das cultivares MG/BR46 Conquista e IAS-5, respectivamente. Plantas transgênicas adultas e férteis foram regeneradas. Para avaliar a eficiência da estratégia de cotransformação, foram realizadas análises moleculares de embriões histodiferenciados e de plantas regeneradas. Os resultados obtidos neste trabalho permitiram o cálculo da taxa de co-transformação de 44% para os embriões histodiferenciados da cultivar MG/BR46 Conquista e de 50% para plantas de IAS-5. Não existem, até o momento, relatos de trabalhos em soja utilizando embriões somáticos globulares em proliferação como alvo para estudos de co-transformação.