978 resultados para Gluon Schwinger-Dyson Equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fast simultaneous hadronization and chemical freeze-out of supercooled quark-gluon plasma, created in relativistic heavy ion collisions, can lead to the reheating of the expanding matter and to the change in a collective flow profile. We use the assumption of statistical nature of the hadronization process, and study quantitatively the freeze-out in the framework of hydrodynamical Bjorken model with different simple quark-gluon plasma equations of state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of hot, dense stellar matter are investigated with a finite temperature nuclear Thomas-Fermi model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method to solve the Lorentz-Dirac equation in the presence of an external electromagnetic field is presented. The validity of the approximation is discussed, and the method is applied to a particle in the presence of a constant magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pseudoclassical model for a spinning nonrelativistic particle is presented. The model contains two first-class constraints which after quantization give rise to the Levy-Leblond equation for a spin-1/2 particle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Swift-Hohenberg equation is studied in the presence of a multiplicative noise. This stochastic equation could describe a situation in which a noise has been superimposed on the temperature gradient between the two plates of a Rayleigh-Bnard cell. A linear stability analysis and numerical simulations show that, in constrast to the additive-noise case, convective structures appear in a regime in which a deterministic analysis predicts a homogeneous solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of the low-lying pseudoscalar mesons with the ground-state baryons in the charm sector is studied within a coupled-channel approach using a t-channel vector-exchange driving force. The amplitudes describing the scattering of the pseudoscalar mesons off the ground-state baryons are obtained by solving the Lippmann-Schwinger equation. We analyze in detail the effects of going beyond the t=0 approximation. Our model predicts the dynamical generation of several open-charm baryon resonances in different isospin and strangeness channels, some of which can be clearly identified with recently observed states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We deal with the hysteretic behavior of partial cycles in the two¿phase region associated with the martensitic transformation of shape¿memory alloys. We consider the problem from a thermodynamic point of view and adopt a local equilibrium formalism, based on the idea of thermoelastic balance, from which a formal writing follows a state equation for the material in terms of its temperature T, external applied stress ¿, and transformed volume fraction x. To describe the striking memory properties exhibited by partial transformation cycles, state variables (x,¿,T) corresponding to the current state of the system have to be supplemented with variables (x,¿,T) corresponding to points where the transformation control parameter (¿¿ and/or T) had reached a maximum or a minimum in the previous thermodynamic history of the system. We restrict our study to simple partial cycles resulting from a single maximum or minimum of the control parameter. Several common features displayed by such partial cycles and repeatedly observed in experiments lead to a set of analytic restrictions, listed explicitly in the paper, to be verified by the dissipative term of the state equation, responsible for hysteresis. Finally, using calorimetric data of thermally induced partial cycles through the martensitic transformation in a Cu¿Zn¿Al alloy, we have fitted a given functional form of the dissipative term consistent with the analytic restrictions mentioned above.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the analytical solution of the Monte Carlo dynamics in the spherical Sherrington-Kirkpatrick model using the technique of the generating function. Explicit solutions for one-time observables (like the energy) and two-time observables (like the correlation and response function) are obtained. We show that the crucial quantity which governs the dynamics is the acceptance rate. At zero temperature, an adiabatic approximation reveals that the relaxational behavior of the model corresponds to that of a single harmonic oscillator with an effective renormalized mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the classical stochastic fluctuations of spacetime geometry induced by quantum fluctuations of massless nonconformal matter fields in the early Universe. To this end, we supplement the stress-energy tensor of these fields with a stochastic part, which is computed along the lines of the Feynman-Vernon and Schwinger-Keldysh techniques; the Einstein equation is therefore upgraded to a so-called Einstein-Langevin equation. We consider in some detail the conformal fluctuations of flat spacetime and the fluctuations of the scale factor in a simple cosmological model introduced by Hartle, which consists of a spatially flat isotropic cosmology driven by radiation and dust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the possibility that the dark energy is due to a potential of a scalar field and that the magnitude and the slope of this potential in our part of the Universe are largely determined by anthropic selection effects. We find that, in some models, the most probable values of the slope are very small, implying that the dark energy density stays constant to very high accuracy throughout cosmological evolution. In other models, however, the most probable values of the slope are such that the slow roll condition is only marginally satisfied, leading to a recollapse of the local universe on a time scale comparable to the lifetime of the Sun. In the latter case, the effective equation of state varies appreciably with the redshift, leading to a number of testable predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show the appearance of spatiotemporal stochastic resonance in the Swift-Hohenberg equation. This phenomenon emerges when a control parameter varies periodically in time around the bifurcation point. By using general scaling arguments and by taking into account the common features occurring in a bifurcation, we outline possible manifestations of the phenomenon in other pattern-forming systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several problems in the theory of photon migration in a turbid medium suggest the utility of calculating solutions of the telegrapher¿s equation in the presence of traps. This paper contains two such solutions for the one-dimensional problem, the first being for a semi-infinite line terminated by a trap, and the second being for a finite line terminated by two traps. Because solutions to the telegrapher¿s equation represent an interpolation between wavelike and diffusive phenomena, they will exhibit discontinuities even in the presence of traps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from the radiative transfer equation, we obtain an analytical solution for both the free propagator along one of the axes and an arbitrary phase function in the Fourier-Laplace domain. We also find the effective absorption parameter, which turns out to be very different from the one provided by the diffusion approximation. We finally present an analytical approximation procedure and obtain a differential equation that accurately reproduces the transport process. We test our approximations by means of simulations that use the Henyey-Greenstein phase function with very satisfactory results.